将碳植入氢化硼以创建色彩中心的原子模拟

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Fei Ren, Zongwei Xu
{"title":"将碳植入氢化硼以创建色彩中心的原子模拟","authors":"Fei Ren, Zongwei Xu","doi":"10.1021/acs.jpcc.4c07558","DOIUrl":null,"url":null,"abstract":"Carbon-related luminescent defects in hexagonal boron nitride (hBN) have the potential to revolutionize sensors and single-photon sources at the atomic scale; however, creating and identifying these defects remain challenging. In this work, we employ analytical potential molecular dynamics (APMD) in conjunction with <i>ab initio</i> molecular dynamics (AIMD) simulations to optimize the ion implantation parameters for creating carbon-related defects in hBN. First, AIMD simulations are conducted to simulate the implantation of low-energy carbon ions into monolayer hBN. Subsequently, APMD simulations based on two types of classic potentials are compared with the results from AIMD simulations, allowing us to determine suitable atomistic potentials. Finally, we predict that carbon atoms can be introduced into monolayer hBN with a 30% probability when the ion energy varies from 40 to 80 eV. Moreover, carbon ion bombardment at 40° can significantly improve the yield of carbon-related color centers. These results can directly guide the generation of vacancy and carbon-related color centers in hBN and even hBN nanotubes for single-photon sources and quantum sensing, and the simulated methods would provide a pathway to understand the formation of carbon-related defects to identify the possible atomic structures.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"1 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic Simulations of Carbon Implantation into hBN for Creating Color Centers\",\"authors\":\"Fei Ren, Zongwei Xu\",\"doi\":\"10.1021/acs.jpcc.4c07558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon-related luminescent defects in hexagonal boron nitride (hBN) have the potential to revolutionize sensors and single-photon sources at the atomic scale; however, creating and identifying these defects remain challenging. In this work, we employ analytical potential molecular dynamics (APMD) in conjunction with <i>ab initio</i> molecular dynamics (AIMD) simulations to optimize the ion implantation parameters for creating carbon-related defects in hBN. First, AIMD simulations are conducted to simulate the implantation of low-energy carbon ions into monolayer hBN. Subsequently, APMD simulations based on two types of classic potentials are compared with the results from AIMD simulations, allowing us to determine suitable atomistic potentials. Finally, we predict that carbon atoms can be introduced into monolayer hBN with a 30% probability when the ion energy varies from 40 to 80 eV. Moreover, carbon ion bombardment at 40° can significantly improve the yield of carbon-related color centers. These results can directly guide the generation of vacancy and carbon-related color centers in hBN and even hBN nanotubes for single-photon sources and quantum sensing, and the simulated methods would provide a pathway to understand the formation of carbon-related defects to identify the possible atomic structures.\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcc.4c07558\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c07558","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

六方氮化硼(hBN)中的碳相关发光缺陷有可能在原子尺度上彻底改变传感器和单光子源;然而,创建和识别这些缺陷仍然具有挑战性。在这项工作中,我们采用分析势分子动力学(APMD)结合从头算分子动力学(AIMD)模拟来优化离子注入参数,以在hBN中产生碳相关缺陷。首先,利用AIMD模拟低能碳离子注入单层hBN的过程。然后,将基于两种经典电位的APMD模拟结果与AIMD模拟结果进行比较,从而确定合适的原子电位。最后,我们预测当离子能量在40 ~ 80 eV之间变化时,碳原子以30%的概率被引入单层hBN。40°碳离子轰击可以显著提高碳相关色心的产率。这些结果可以直接指导用于单光子源和量子传感的hBN甚至hBN纳米管中空位和碳相关色中心的产生,并且模拟方法将为了解碳相关缺陷的形成以识别可能的原子结构提供途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomistic Simulations of Carbon Implantation into hBN for Creating Color Centers

Atomistic Simulations of Carbon Implantation into hBN for Creating Color Centers
Carbon-related luminescent defects in hexagonal boron nitride (hBN) have the potential to revolutionize sensors and single-photon sources at the atomic scale; however, creating and identifying these defects remain challenging. In this work, we employ analytical potential molecular dynamics (APMD) in conjunction with ab initio molecular dynamics (AIMD) simulations to optimize the ion implantation parameters for creating carbon-related defects in hBN. First, AIMD simulations are conducted to simulate the implantation of low-energy carbon ions into monolayer hBN. Subsequently, APMD simulations based on two types of classic potentials are compared with the results from AIMD simulations, allowing us to determine suitable atomistic potentials. Finally, we predict that carbon atoms can be introduced into monolayer hBN with a 30% probability when the ion energy varies from 40 to 80 eV. Moreover, carbon ion bombardment at 40° can significantly improve the yield of carbon-related color centers. These results can directly guide the generation of vacancy and carbon-related color centers in hBN and even hBN nanotubes for single-photon sources and quantum sensing, and the simulated methods would provide a pathway to understand the formation of carbon-related defects to identify the possible atomic structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信