Janis T Linke, Luise Appeltshauser, Kathrin Doppler, Katrin G Heinze
{"title":"利用可扩展的开源工具包进行深度学习驱动的自动高内容 dSTORM 成像。","authors":"Janis T Linke, Luise Appeltshauser, Kathrin Doppler, Katrin G Heinze","doi":"10.1016/j.bpr.2025.100201","DOIUrl":null,"url":null,"abstract":"<p><p>Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":" ","pages":"100201"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-driven automated high-content dSTORM imaging with a scalable open-source toolkit.\",\"authors\":\"Janis T Linke, Luise Appeltshauser, Kathrin Doppler, Katrin G Heinze\",\"doi\":\"10.1016/j.bpr.2025.100201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.</p>\",\"PeriodicalId\":72402,\"journal\":{\"name\":\"Biophysical reports\",\"volume\":\" \",\"pages\":\"100201\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpr.2025.100201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2025.100201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Deep learning-driven automated high-content dSTORM imaging with a scalable open-source toolkit.
Super-resolution microscopy offers the ability to visualize molecular structures in biological samples with unprecedented detail. However, the full potential of these techniques is often hindered by a lack of automated, user-independent workflows. Here, we present an open-source toolkit that automates dSTORM super-resolution microscopy using deep learning for segmentation and object detection. This standalone program enables reliable segmentation of diverse biomedical images, even in low-contrast samples, surpassing existing solutions. Integrated into the imaging pipeline, it rapidly processes high-content data in minutes, reducing manual labor. Demonstrated by biological examples, such as microtubules in cell culture and the βII-spectrin in nerve fibers, our approach makes super-resolution imaging faster, more robust, and easy to use, even by nonexperts. This broadens its potential applications in biomedicine, including high-throughput experimentation.