Marc Vaisband, Valentin von Bornhaupt, Nina Schmid, Izdar Abulizi, Jan Hasenauer
{"title":"SDE系数函数无假设神经推理的损失公式。","authors":"Marc Vaisband, Valentin von Bornhaupt, Nina Schmid, Izdar Abulizi, Jan Hasenauer","doi":"10.1038/s41540-025-00500-6","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"22"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873317/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loss formulations for assumption-free neural inference of SDE coefficient functions.\",\"authors\":\"Marc Vaisband, Valentin von Bornhaupt, Nina Schmid, Izdar Abulizi, Jan Hasenauer\",\"doi\":\"10.1038/s41540-025-00500-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"22\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873317/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00500-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00500-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Loss formulations for assumption-free neural inference of SDE coefficient functions.
Stochastic differential equations (SDEs) are one of the most commonly studied probabilistic dynamical systems, and widely used to model complex biological processes. Building upon the previously introduced idea of performing inference of dynamical systems by parametrising their coefficient functions via neural networks, we propose a novel formulation for an optimisation objective that combines simulation-based penalties with pseudo-likelihoods. This greatly improves prediction performance compared to the state-of-the-art, and makes it possible to learn a wide variety of dynamics without any prior assumptions on analytical structure.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.