胚胎诱导的牛输卵管细胞外囊泡蛋白谱变化。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Molecular & Cellular Proteomics Pub Date : 2025-04-01 Epub Date: 2025-02-28 DOI:10.1016/j.mcpro.2025.100935
Rosane Mazzarella, José María Sánchez, Beatriz Fernandez-Fuertes, Sandra Guisado Egido, Michael McDonald, Alberto Álvarez-Barrientos, Esperanza González, Juan Manuel Falcón-Pérez, Mikel Azkargorta, Félix Elortza, Maria Encina González, Pat Lonergan, Dimitrios Rizos
{"title":"胚胎诱导的牛输卵管细胞外囊泡蛋白谱变化。","authors":"Rosane Mazzarella, José María Sánchez, Beatriz Fernandez-Fuertes, Sandra Guisado Egido, Michael McDonald, Alberto Álvarez-Barrientos, Esperanza González, Juan Manuel Falcón-Pérez, Mikel Azkargorta, Félix Elortza, Maria Encina González, Pat Lonergan, Dimitrios Rizos","doi":"10.1016/j.mcpro.2025.100935","DOIUrl":null,"url":null,"abstract":"<p><p>The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: 1) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; 2) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp + Emb); and 3) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp + Emb with EVs from pregnant heifers. Proteins were considered \"identified\" if detected in at least three out of five replicates and considered \"exclusive\" if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp + Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp + Emb, 17 were common to Exp and Emb, 5 were common to Exp + Emb and Emb, 4 were unique to Exp, 6 were unique to Exp + Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp + Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp + Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs and their protein contents.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100935"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Embryo-Induced Changes in the Protein Profile of Bovine Oviductal Extracellular Vesicles.\",\"authors\":\"Rosane Mazzarella, José María Sánchez, Beatriz Fernandez-Fuertes, Sandra Guisado Egido, Michael McDonald, Alberto Álvarez-Barrientos, Esperanza González, Juan Manuel Falcón-Pérez, Mikel Azkargorta, Félix Elortza, Maria Encina González, Pat Lonergan, Dimitrios Rizos\",\"doi\":\"10.1016/j.mcpro.2025.100935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: 1) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; 2) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp + Emb); and 3) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp + Emb with EVs from pregnant heifers. Proteins were considered \\\"identified\\\" if detected in at least three out of five replicates and considered \\\"exclusive\\\" if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp + Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp + Emb, 17 were common to Exp and Emb, 5 were common to Exp + Emb and Emb, 4 were unique to Exp, 6 were unique to Exp + Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp + Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp + Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs and their protein contents.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100935\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.100935\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100935","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

早期母胚串扰的研究一直是生殖生物学中最具挑战性的课题之一。了解母系生殖道与发育中的胚胎相互作用的生理机制对提高牛的生殖效率至关重要。这种复杂的交流始于输卵管内,在输卵管内,细胞外囊泡(EVs)部分促进了对确保胚胎质量重要的生物过程的调节。利用体内和体外模型的结合,本研究有三个主要目的:(i)检查从循环和怀孕母牛的输卵管液(of)中分离的ev的蛋白质货物,以了解它们在体内母胎交流中的作用;(ii)在条件培养基(CM)中,通过单独培养输卵管外植体(Exp)或存在8- 16细胞期胚胎(Exp+Emb)来表征ev的蛋白质谱;(iii)比较Exp型与循环型母牛ev、Exp+Emb型与妊娠型母牛ev的蛋白质含量。如果在五个重复中至少有三个被检测到,则认为蛋白质是“已识别的”;如果在一个组内的五个重复中至少有三个被检测到,但在其他组的所有样品中都不存在,则认为蛋白质是“排他性的”。我们在循环和怀孕母牛的of - ev中分别鉴定出659和1476个蛋白。其中,644个蛋白在循环母牛和妊娠母牛的of - ev中都被鉴定出来,40个蛋白是妊娠母牛的of - ev所特有的。在两组鉴定的644个蛋白质中,31个被鉴定为不同丰度的蛋白质(DAPs)。在怀孕母牛中,DAPs主要与基因组激活、DNA修复、胚胎细胞分化、迁移和免疫耐受有关。在体外,我们从Exp单独培养的cm - ev中鉴定出841个蛋白,Exp+Emb培养的cm - ev中鉴定出613个蛋白,而Emb单独培养的cm - ev中鉴定出111个蛋白。3个体外组共鉴定出81个蛋白,其中Exp和Exp+Emb共有蛋白452个,Exp和Emb共有蛋白17个,Exp+Emb和Emb共有蛋白5个,Exp特有蛋白4个,Exp+Emb特有蛋白6个,Emb无特有蛋白。在试管中,当输卵管和胚胎之间存在相互作用时发现的蛋白质(对应于Exp+Emb组)与免疫耐受、结构活性、结合和细胞骨架调节相关。在体内和体外,当比较无胚胎(周期和Exp)和胚胎-输卵管相互作用(妊娠和Exp+Emb)时产生的EVs时,都表现出不同的定性和定量蛋白质含量。在体内和体外观察到,由于母胚交流,胚胎和母体环境之间的相互作用在输卵管内开始,并可能由ev及其蛋白质含量促进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embryo-Induced Changes in the Protein Profile of Bovine Oviductal Extracellular Vesicles.

The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: 1) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; 2) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp + Emb); and 3) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp + Emb with EVs from pregnant heifers. Proteins were considered "identified" if detected in at least three out of five replicates and considered "exclusive" if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp + Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp + Emb, 17 were common to Exp and Emb, 5 were common to Exp + Emb and Emb, 4 were unique to Exp, 6 were unique to Exp + Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp + Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp + Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs and their protein contents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信