IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Anja Schork , Andreas Fritsche , Erwin D. Schleicher , Andreas Peter , Martin Heni , Norbert Stefan , Reiner Jumpertz von Schwartzenberg , Martina Guthoff , Harald Mischak , Justyna Siwy , Andreas L. Birkenfeld , Robert Wagner
{"title":"Differential risk assessment in persons at risk of type 2 diabetes using urinary peptidomics","authors":"Anja Schork ,&nbsp;Andreas Fritsche ,&nbsp;Erwin D. Schleicher ,&nbsp;Andreas Peter ,&nbsp;Martin Heni ,&nbsp;Norbert Stefan ,&nbsp;Reiner Jumpertz von Schwartzenberg ,&nbsp;Martina Guthoff ,&nbsp;Harald Mischak ,&nbsp;Justyna Siwy ,&nbsp;Andreas L. Birkenfeld ,&nbsp;Robert Wagner","doi":"10.1016/j.metabol.2025.156174","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Individuals at increased risk of type 2 diabetes have recently been classified into six prediabetes clusters, which stratify the risk of progression to diabetes and diabetes complications. Clusters 1, 2 and 4 are low-risk clusters while clusters 3, 5 and 6 are high-risk clusters; individuals in cluster 6 have an elevated risk of nephropathy and all-cause mortality despite delayed onset of diabetes. The urinary peptidome classifiers CKD273 (chronic kidney disease, CKD), HF2 (heart failure, HF) and CAD238 (coronary artery disease, CAD) are based on unique urinary peptide patterns and have shown potential for identifying individuals at risk for CKD and cardiovascular pathologies. This observational study investigates whether peptidome classifiers can differentiate complication risks across the prediabetes clusters and if a novel combination of peptides can distinguish high-risk from low-risk prediabetes clusters.</div></div><div><h3>Methods</h3><div>Urine peptidome analysis was performed on spot urine samples from individuals across 6 prediabetes clusters (<em>n</em> = 249) and 19 individuals with screen-detected diabetes (study cohorts at University Hospital Tübingen, Germany from 11/2004 to 11/2012). Predefined urinary classifiers were calculated for each participant. Lasso regression analysis was used to identify an optimal combination of peptides distinguishing low- Schlesinger et al. (2022), Wagner et al. (2021) [<span><span>1</span></span>,<span><span>2</span></span>,<span><span>4</span></span>] and high-risk (Rooney et al., 2021; Wagner, 2023; Latosinska et al., 2021 [<span><span>3</span></span>,<span><span>5</span></span>,<span><span>6</span></span>]) clusters.</div></div><div><h3>Results</h3><div>The predefined urinary peptidome classifiers CKD273, HF2 and CAD238 differed significantly across prediabetes clusters, particularly with elevated values in cluster 6 compared to the healthiest cluster 2. CKD273, HF2 and CAD238 were inversely associated with insulin sensitivity indexes. Machine Learning identified a combination of 112 urinary peptides that differentiated low-risk from high-risk prediabetes clusters (AUC-ROC 0.868 (95 % CI 0.755–0.981)).</div></div><div><h3>Conclusions</h3><div>Urinary peptidome classifiers support the increased risk of CKD and suggest an elevated risk of heart failure and coronary artery disease in the high-risk prediabetes cluster 6. Urine peptidomics show promising potential as a tool for identifying high-risk prediabetes individuals and guiding early preventive interventions.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"167 ","pages":"Article 156174"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525000435","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:最近,人们将罹患 2 型糖尿病风险较高的人分为六个糖尿病前期群组,这些群组对发展为糖尿病和糖尿病并发症的风险进行了分层。群组1、2和4为低风险群组,而群组3、5和6为高风险群组;群组6中的个体尽管糖尿病发病时间较晚,但肾病和全因死亡率风险较高。尿肽组分类器 CKD273(慢性肾脏病,CKD)、HF2(心力衰竭,HF)和 CAD238(冠状动脉疾病,CAD)基于独特的尿肽模式,已显示出识别慢性肾脏病和心血管疾病高危人群的潜力。这项观察性研究探讨了肽组分类器能否区分糖尿病前期群组的并发症风险,以及肽的新型组合能否区分高风险和低风险的糖尿病前期群组:对6个糖尿病前期群组(n = 249)和19个筛查出的糖尿病患者(2004年11月至2012年11月在德国图宾根大学医院进行的研究队列)的点滴尿样进行了尿肽组分析。为每位参与者计算了预定义的尿液分类器。拉索回归分析用于确定区分低Schlesinger等人(2022年)、Wagner等人(2021年)[1,2,4]和高风险(Rooney等人,2021年;Wagner,2023年;Latosinska等人,2021年[3,5,6])簇的肽的最佳组合:结果:预定义的尿肽组分类器 CKD273、HF2 和 CAD238 在糖尿病前期群组中差异显著,尤其是群组 6 中的数值高于最健康的群组 2。CKD273、HF2和CAD238与胰岛素敏感性指数成反比。机器学习确定了112种尿肽的组合,可区分低风险和高风险糖尿病前期群组(AUC-ROC 0.868 (95 % CI 0.755-0.981)):结论:尿肽组分类器支持慢性肾脏病风险增加的观点,并提示高风险糖尿病前期群组6的心力衰竭和冠状动脉疾病风险增加。尿肽组学有望成为识别糖尿病前期高危人群并指导早期预防干预的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Differential risk assessment in persons at risk of type 2 diabetes using urinary peptidomics

Differential risk assessment in persons at risk of type 2 diabetes using urinary peptidomics

Objective

Individuals at increased risk of type 2 diabetes have recently been classified into six prediabetes clusters, which stratify the risk of progression to diabetes and diabetes complications. Clusters 1, 2 and 4 are low-risk clusters while clusters 3, 5 and 6 are high-risk clusters; individuals in cluster 6 have an elevated risk of nephropathy and all-cause mortality despite delayed onset of diabetes. The urinary peptidome classifiers CKD273 (chronic kidney disease, CKD), HF2 (heart failure, HF) and CAD238 (coronary artery disease, CAD) are based on unique urinary peptide patterns and have shown potential for identifying individuals at risk for CKD and cardiovascular pathologies. This observational study investigates whether peptidome classifiers can differentiate complication risks across the prediabetes clusters and if a novel combination of peptides can distinguish high-risk from low-risk prediabetes clusters.

Methods

Urine peptidome analysis was performed on spot urine samples from individuals across 6 prediabetes clusters (n = 249) and 19 individuals with screen-detected diabetes (study cohorts at University Hospital Tübingen, Germany from 11/2004 to 11/2012). Predefined urinary classifiers were calculated for each participant. Lasso regression analysis was used to identify an optimal combination of peptides distinguishing low- Schlesinger et al. (2022), Wagner et al. (2021) [1,2,4] and high-risk (Rooney et al., 2021; Wagner, 2023; Latosinska et al., 2021 [3,5,6]) clusters.

Results

The predefined urinary peptidome classifiers CKD273, HF2 and CAD238 differed significantly across prediabetes clusters, particularly with elevated values in cluster 6 compared to the healthiest cluster 2. CKD273, HF2 and CAD238 were inversely associated with insulin sensitivity indexes. Machine Learning identified a combination of 112 urinary peptides that differentiated low-risk from high-risk prediabetes clusters (AUC-ROC 0.868 (95 % CI 0.755–0.981)).

Conclusions

Urinary peptidome classifiers support the increased risk of CKD and suggest an elevated risk of heart failure and coronary artery disease in the high-risk prediabetes cluster 6. Urine peptidomics show promising potential as a tool for identifying high-risk prediabetes individuals and guiding early preventive interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolism: clinical and experimental
Metabolism: clinical and experimental 医学-内分泌学与代谢
CiteScore
18.90
自引率
3.10%
发文量
310
审稿时长
16 days
期刊介绍: Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism. Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential. The journal addresses a range of topics, including: - Energy Expenditure and Obesity - Metabolic Syndrome, Prediabetes, and Diabetes - Nutrition, Exercise, and the Environment - Genetics and Genomics, Proteomics, and Metabolomics - Carbohydrate, Lipid, and Protein Metabolism - Endocrinology and Hypertension - Mineral and Bone Metabolism - Cardiovascular Diseases and Malignancies - Inflammation in metabolism and immunometabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信