利用 LC-HR-MS/MS 技术,在一名服用氟伏沙明过量的死者体内获得的固体组织和体液中检测到氟伏沙明的 11 种新代谢物,并在体外检测到人肝微粒体中的代谢物。

IF 2.8 4区 医学 Q2 TOXICOLOGY
Kayoko Minakata, Hideki Nozawa, Itaru Yamagishi, Kenta Yuyama, Masako Suzuki, Takuya Kitamoto, Minako Kondo, Osamu Suzuki, Koutaro Hasegawa
{"title":"利用 LC-HR-MS/MS 技术,在一名服用氟伏沙明过量的死者体内获得的固体组织和体液中检测到氟伏沙明的 11 种新代谢物,并在体外检测到人肝微粒体中的代谢物。","authors":"Kayoko Minakata, Hideki Nozawa, Itaru Yamagishi, Kenta Yuyama, Masako Suzuki, Takuya Kitamoto, Minako Kondo, Osamu Suzuki, Koutaro Hasegawa","doi":"10.1007/s11419-025-00714-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Fluvoxamine (FLV) has been used widely as an antidepressant agent belonging to the group of second-generation selective serotonin reuptake inhibitors. However, only one work on the human metabolism of FLV was reported in 1983, examining a human urine specimen, and tentatively identified nine metabolites. Therefore, in the present work, the metabolites of FLV were examined in the liver, bile, and urine from a human cadaver, and the metabolites produced in the human liver microsomes (HLMs) in vitro were also examined.</p><p><strong>Methods: </strong>Metabolites in each matrix were treated altogether in a tube where impurities had been precipitated using acetonitrile. The identification and tentative quantification of metabolites in human specimens and HLMs were performed using liquid chromatography (LC)-high resolution mass spectrometry (MS), LC-tandem mass spectrometry (MS/MS) and LC-QTRAP- MS/MS.</p><p><strong>Results: </strong>Eleven new metabolites designated as M1 to M11 were detected from human cadaver specimens and HLMs. M1 was produced after acetylation at the terminal NH<sub>2</sub> of FLV and was the most abundant metabolite in the liver and bile, but was the third abundant one in urine. M4 was produced after demethylation at the methoxy moiety of FLV, and was the most abundant metabolite in HLMs.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first report on the existence of eleven new metabolites (M1-M11) of FLV in HLMs, human liver, bile and urine. The present eleven metabolites may be useful for the identification of FLV in human samples both antemortem and postmortem.</p>","PeriodicalId":12329,"journal":{"name":"Forensic Toxicology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eleven new metabolites of fluvoxamine detected in the solid tissues and body fluids obtained from a deceased overdosed with fluvoxamine in vivo, and the metabolites in the human liver microsomes in vitro using LC-HR-MS/MS.\",\"authors\":\"Kayoko Minakata, Hideki Nozawa, Itaru Yamagishi, Kenta Yuyama, Masako Suzuki, Takuya Kitamoto, Minako Kondo, Osamu Suzuki, Koutaro Hasegawa\",\"doi\":\"10.1007/s11419-025-00714-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Fluvoxamine (FLV) has been used widely as an antidepressant agent belonging to the group of second-generation selective serotonin reuptake inhibitors. However, only one work on the human metabolism of FLV was reported in 1983, examining a human urine specimen, and tentatively identified nine metabolites. Therefore, in the present work, the metabolites of FLV were examined in the liver, bile, and urine from a human cadaver, and the metabolites produced in the human liver microsomes (HLMs) in vitro were also examined.</p><p><strong>Methods: </strong>Metabolites in each matrix were treated altogether in a tube where impurities had been precipitated using acetonitrile. The identification and tentative quantification of metabolites in human specimens and HLMs were performed using liquid chromatography (LC)-high resolution mass spectrometry (MS), LC-tandem mass spectrometry (MS/MS) and LC-QTRAP- MS/MS.</p><p><strong>Results: </strong>Eleven new metabolites designated as M1 to M11 were detected from human cadaver specimens and HLMs. M1 was produced after acetylation at the terminal NH<sub>2</sub> of FLV and was the most abundant metabolite in the liver and bile, but was the third abundant one in urine. M4 was produced after demethylation at the methoxy moiety of FLV, and was the most abundant metabolite in HLMs.</p><p><strong>Conclusions: </strong>To our knowledge, this is the first report on the existence of eleven new metabolites (M1-M11) of FLV in HLMs, human liver, bile and urine. The present eleven metabolites may be useful for the identification of FLV in human samples both antemortem and postmortem.</p>\",\"PeriodicalId\":12329,\"journal\":{\"name\":\"Forensic Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11419-025-00714-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11419-025-00714-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:氟伏沙明(Fluvoxamine, FLV)作为第二代选择性5 -羟色胺再摄取抑制剂被广泛应用于抗抑郁药物。然而,在1983年,只有一项关于FLV人体代谢的工作被报道,检查了一个人的尿液样本,并初步确定了九种代谢物。因此,在本工作中,我们检测了人尸体肝脏、胆汁和尿液中FLV的代谢物,并检测了体外人肝微粒体(HLMs)产生的代谢物。方法:每种基质中的代谢物在一个用乙腈沉淀杂质的管中一起处理。采用液相色谱(LC)-高分辨质谱(MS)、LC-串联质谱(MS/MS)和LC- qtrap - MS/MS对人体标本和HLMs中代谢物进行鉴定和初步定量。结果:从人尸体标本和HLMs中检出了11种新的M1 ~ M11代谢物。M1是在FLV末端NH2乙酰化后产生的,是肝脏和胆汁中含量最多的代谢物,但在尿液中含量第三。M4在FLV的甲氧基部分去甲基化后产生,是HLMs中最丰富的代谢物。结论:据我们所知,这是首次报道FLV在HLMs、人肝脏、胆汁和尿液中存在11种新的代谢物(M1-M11)。目前的11种代谢物可能对人类死前和死后样本中FLV的鉴定有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eleven new metabolites of fluvoxamine detected in the solid tissues and body fluids obtained from a deceased overdosed with fluvoxamine in vivo, and the metabolites in the human liver microsomes in vitro using LC-HR-MS/MS.

Purpose: Fluvoxamine (FLV) has been used widely as an antidepressant agent belonging to the group of second-generation selective serotonin reuptake inhibitors. However, only one work on the human metabolism of FLV was reported in 1983, examining a human urine specimen, and tentatively identified nine metabolites. Therefore, in the present work, the metabolites of FLV were examined in the liver, bile, and urine from a human cadaver, and the metabolites produced in the human liver microsomes (HLMs) in vitro were also examined.

Methods: Metabolites in each matrix were treated altogether in a tube where impurities had been precipitated using acetonitrile. The identification and tentative quantification of metabolites in human specimens and HLMs were performed using liquid chromatography (LC)-high resolution mass spectrometry (MS), LC-tandem mass spectrometry (MS/MS) and LC-QTRAP- MS/MS.

Results: Eleven new metabolites designated as M1 to M11 were detected from human cadaver specimens and HLMs. M1 was produced after acetylation at the terminal NH2 of FLV and was the most abundant metabolite in the liver and bile, but was the third abundant one in urine. M4 was produced after demethylation at the methoxy moiety of FLV, and was the most abundant metabolite in HLMs.

Conclusions: To our knowledge, this is the first report on the existence of eleven new metabolites (M1-M11) of FLV in HLMs, human liver, bile and urine. The present eleven metabolites may be useful for the identification of FLV in human samples both antemortem and postmortem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic Toxicology
Forensic Toxicology TOXICOLOGY-
CiteScore
5.80
自引率
9.10%
发文量
40
审稿时长
3 months
期刊介绍: The journal Forensic Toxicology provides an international forum for publication of studies on toxic substances, drugs of abuse, doping agents, chemical warfare agents, and their metabolisms and analyses, which are related to laws and ethics. It includes original articles, reviews, mini-reviews, short communications, and case reports. Although a major focus of the journal is on the development or improvement of analytical methods for the above-mentioned chemicals in human matrices, appropriate studies with animal experiments are also published. Forensic Toxicology is the official publication of the Japanese Association of Forensic Toxicology (JAFT) and is the continuation of the Japanese Journal of Forensic Toxicology (ISSN 0915-9606).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信