[利用斑马鱼行为评估药物的发育神经毒性]。

Yuhei Nishimura
{"title":"[利用斑马鱼行为评估药物的发育神经毒性]。","authors":"Yuhei Nishimura","doi":"10.1254/fpj.24085","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceuticals used for pregnant women must be safe for the babies while therapeutic to the mothers. To ensure the safety of drugs, developmental neurotoxicity should be evaluated although it is currently not a mandatory requirement in the US and Europe at the regulatory level. Organisation for Economic Co-operation and Development (OECD) has constituted the test guideline (TG426) to assess developmental neurotoxicity. TG426 requires various assessments using animals (assuming rats), including the brain weight, neuropathology, locomotion, sensorimotor function, and learning ability of dams from the mother treated with the chemical during pregnancy. Due to the huge burden of the cost, time, and labor, the number of chemicals evaluated for developmental neurotoxicity by TG426 remains around 200. To boost the pace of the assessment, OCED has constituted a novel guideline (No. 377) adopting in vitro test batteries. OCED has also evaluated the utility of the neurobehavior of zebrafish larvae in the assessment of developmental neurotoxicity. In this review, I focus on valproic acid, a therapeutic drug to treat epilepsy and bipolar disorder and a well-known developmental neurotoxicant, and summarize the studies using zebrafish neurobehavior to assess the developmental neurotoxicity of valproic acid. The utility and validity of zebrafish neurobehavior for developmental neurotoxicity testing are discussed by comparing the findings from rodents and humans.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"115-119"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Assessment of developmental neurotoxicity of pharmaceuticals using zebrafish behavior].\",\"authors\":\"Yuhei Nishimura\",\"doi\":\"10.1254/fpj.24085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmaceuticals used for pregnant women must be safe for the babies while therapeutic to the mothers. To ensure the safety of drugs, developmental neurotoxicity should be evaluated although it is currently not a mandatory requirement in the US and Europe at the regulatory level. Organisation for Economic Co-operation and Development (OECD) has constituted the test guideline (TG426) to assess developmental neurotoxicity. TG426 requires various assessments using animals (assuming rats), including the brain weight, neuropathology, locomotion, sensorimotor function, and learning ability of dams from the mother treated with the chemical during pregnancy. Due to the huge burden of the cost, time, and labor, the number of chemicals evaluated for developmental neurotoxicity by TG426 remains around 200. To boost the pace of the assessment, OCED has constituted a novel guideline (No. 377) adopting in vitro test batteries. OCED has also evaluated the utility of the neurobehavior of zebrafish larvae in the assessment of developmental neurotoxicity. In this review, I focus on valproic acid, a therapeutic drug to treat epilepsy and bipolar disorder and a well-known developmental neurotoxicant, and summarize the studies using zebrafish neurobehavior to assess the developmental neurotoxicity of valproic acid. The utility and validity of zebrafish neurobehavior for developmental neurotoxicity testing are discussed by comparing the findings from rodents and humans.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\"160 2\",\"pages\":\"115-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.24085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

孕妇用药必须对婴儿安全,对母亲有治疗作用。为了确保药物的安全性,应该对发育性神经毒性进行评估,尽管目前在美国和欧洲的监管层面上并不是强制性要求。经济合作与发展组织(OECD)制定了评估发育神经毒性的测试指南(TG426)。TG426需要使用动物(假设是大鼠)进行各种评估,包括脑重量、神经病理学、运动、感觉运动功能和学习能力,这些都是在怀孕期间接受化学物质治疗的母鼠的后代。由于成本、时间和人力的巨大负担,TG426评估的发育性神经毒性化学物质的数量保持在200种左右。为了加快评估的步伐,OCED制定了一项采用体外测试电池的新指南(第377号)。OCED还评估了斑马鱼幼体神经行为在发育神经毒性评估中的效用。本文以丙戊酸作为治疗癫痫和双相情感障碍的药物,是一种著名的发育性神经毒物,并对利用斑马鱼神经行为评价丙戊酸发育性神经毒性的研究进行综述。通过比较啮齿动物和人类的结果,讨论了斑马鱼神经行为在发育性神经毒性测试中的效用和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Assessment of developmental neurotoxicity of pharmaceuticals using zebrafish behavior].

Pharmaceuticals used for pregnant women must be safe for the babies while therapeutic to the mothers. To ensure the safety of drugs, developmental neurotoxicity should be evaluated although it is currently not a mandatory requirement in the US and Europe at the regulatory level. Organisation for Economic Co-operation and Development (OECD) has constituted the test guideline (TG426) to assess developmental neurotoxicity. TG426 requires various assessments using animals (assuming rats), including the brain weight, neuropathology, locomotion, sensorimotor function, and learning ability of dams from the mother treated with the chemical during pregnancy. Due to the huge burden of the cost, time, and labor, the number of chemicals evaluated for developmental neurotoxicity by TG426 remains around 200. To boost the pace of the assessment, OCED has constituted a novel guideline (No. 377) adopting in vitro test batteries. OCED has also evaluated the utility of the neurobehavior of zebrafish larvae in the assessment of developmental neurotoxicity. In this review, I focus on valproic acid, a therapeutic drug to treat epilepsy and bipolar disorder and a well-known developmental neurotoxicant, and summarize the studies using zebrafish neurobehavior to assess the developmental neurotoxicity of valproic acid. The utility and validity of zebrafish neurobehavior for developmental neurotoxicity testing are discussed by comparing the findings from rodents and humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信