PyPropel:一个基于python的工具,用于有效地处理和表征蛋白质数据。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Jianfeng Sun, Jinlong Ru, Adam P Cribbs, Dapeng Xiong
{"title":"PyPropel:一个基于python的工具,用于有效地处理和表征蛋白质数据。","authors":"Jianfeng Sun, Jinlong Ru, Adam P Cribbs, Dapeng Xiong","doi":"10.1186/s12859-025-06079-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The volume of protein sequence data has grown exponentially in recent years, driven by advancements in metagenomics. Despite this, a substantial proportion of these sequences remain poorly annotated, underscoring the need for robust bioinformatics tools to facilitate efficient characterisation and annotation for functional studies.</p><p><strong>Results: </strong>We present PyPropel, a Python-based computational tool developed to streamline the large-scale analysis of protein data, with a particular focus on applications in machine learning. PyPropel integrates sequence and structural data pre-processing, feature generation, and post-processing for model performance evaluation and visualisation, offering a comprehensive solution for handling complex protein datasets.</p><p><strong>Conclusion: </strong>PyPropel provides added value over existing tools by offering a unified workflow that encompasses the full spectrum of protein research, from raw data pre-processing to functional annotation and model performance analysis, thereby supporting efficient protein function studies.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"70"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871610/pdf/","citationCount":"0","resultStr":"{\"title\":\"PyPropel: a Python-based tool for efficiently processing and characterising protein data.\",\"authors\":\"Jianfeng Sun, Jinlong Ru, Adam P Cribbs, Dapeng Xiong\",\"doi\":\"10.1186/s12859-025-06079-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The volume of protein sequence data has grown exponentially in recent years, driven by advancements in metagenomics. Despite this, a substantial proportion of these sequences remain poorly annotated, underscoring the need for robust bioinformatics tools to facilitate efficient characterisation and annotation for functional studies.</p><p><strong>Results: </strong>We present PyPropel, a Python-based computational tool developed to streamline the large-scale analysis of protein data, with a particular focus on applications in machine learning. PyPropel integrates sequence and structural data pre-processing, feature generation, and post-processing for model performance evaluation and visualisation, offering a comprehensive solution for handling complex protein datasets.</p><p><strong>Conclusion: </strong>PyPropel provides added value over existing tools by offering a unified workflow that encompasses the full spectrum of protein research, from raw data pre-processing to functional annotation and model performance analysis, thereby supporting efficient protein function studies.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"70\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06079-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06079-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:近年来,在宏基因组学的推动下,蛋白质序列数据量呈指数级增长。尽管如此,这些序列的很大一部分仍然没有得到很好的注释,这强调了对强大的生物信息学工具的需求,以促进功能研究的有效表征和注释。结果:我们提出了PyPropel,一个基于python的计算工具,用于简化蛋白质数据的大规模分析,特别关注机器学习中的应用。PyPropel集成了序列和结构数据预处理、特征生成和后处理,用于模型性能评估和可视化,为处理复杂的蛋白质数据集提供了全面的解决方案。结论:PyPropel提供了一个统一的工作流程,涵盖了蛋白质研究的全谱,从原始数据预处理到功能注释和模型性能分析,从而支持有效的蛋白质功能研究,从而为现有工具提供了附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyPropel: a Python-based tool for efficiently processing and characterising protein data.

Background: The volume of protein sequence data has grown exponentially in recent years, driven by advancements in metagenomics. Despite this, a substantial proportion of these sequences remain poorly annotated, underscoring the need for robust bioinformatics tools to facilitate efficient characterisation and annotation for functional studies.

Results: We present PyPropel, a Python-based computational tool developed to streamline the large-scale analysis of protein data, with a particular focus on applications in machine learning. PyPropel integrates sequence and structural data pre-processing, feature generation, and post-processing for model performance evaluation and visualisation, offering a comprehensive solution for handling complex protein datasets.

Conclusion: PyPropel provides added value over existing tools by offering a unified workflow that encompasses the full spectrum of protein research, from raw data pre-processing to functional annotation and model performance analysis, thereby supporting efficient protein function studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信