缺氧预处理神经干细胞外泌体来源的CDC42抑制acsl4相关的铁下垂减轻帕金森病小鼠模型的血管损伤

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
You Li, Junwen Jiang, Jiameng Li, Siliang Liu, Chuang Wang, Zhengtao Yu, Ying Xia
{"title":"缺氧预处理神经干细胞外泌体来源的CDC42抑制acsl4相关的铁下垂减轻帕金森病小鼠模型的血管损伤","authors":"You Li,&nbsp;Junwen Jiang,&nbsp;Jiameng Li,&nbsp;Siliang Liu,&nbsp;Chuang Wang,&nbsp;Zhengtao Yu,&nbsp;Ying Xia","doi":"10.1111/jnc.70027","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Parkinson's disease (PD) is a neurodegenerative disorder that gets exacerbated by vascular injury. Neural stem cell-derived exosomes (NSC-Exos) display effective neuroprotective properties in PD models. Cell division control protein 42 (CDC42) is connected to angiogenesis, but its effects in PD remain undefined. This research aims to reveal the role of CDC42 in PD. First, we applied 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>) to induce the human cerebral microvascular endothelial cells (HCMECs) model and evaluated cell viability and ferroptosis. Then, we characterized NSC-Exos. Next, to appraise the effect of hypoxia-pretreated NSC-Exos (H-NSC-Exos) on the MPP<sup>+</sup>-induced cells model, we examined angiogenesis and ferroptosis in HCMECs. Moreover, we constructed the PD mice model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and tested the behavioral experiments and vascular injury of mice. Furthermore, we examined cellular ferroptosis and angiogenesis after knockdown of CDC42. Additionally, we investigated the interaction of CDC42 with Acyl-CoA synthetase long-chain family member 4 (ACSL4) and detected cellular ferroptosis and angiogenesis after overexpression of ACSL4. We found that H-NSC-Exos reversed the MPP<sup>+</sup>-induced decrease in HCMECs viability and migration, lowered lipid-reactive oxygen species (lipid-ROS) levels, suppressed ferroptosis, and facilitated angiogenesis. Moreover, H-NSC-Exos attenuated MPTP-induced PD development, vascular injury, and ferroptosis in mice. H-NSC-Exos with the knockdown of CDC42 reduced cell viability and angiogenesis and raised ferroptosis and lipid-ROS levels, which were reversed by ferrostatin-1 and liproxstatin-1. CDC42 interacted with ACSL4. Furthermore, overexpression of ACSL4 aggravated the above effects of H-NSC-Exos in which CDC42 was knocked down. Our study reveals that H-NSC-Exos-derived CDC42 inhibited ACSL4-related ferroptosis to alleviate vascular injury in PD mice models. CDC42 may serve as a potent therapeutic target for PD treatment.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>\n </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosome-Derived CDC42 From Hypoxia-Pretreated Neural Stem Cells Inhibits ACSL4-Related Ferroptosis to Alleviate Vascular Injury in Parkinson's Disease Mice Models\",\"authors\":\"You Li,&nbsp;Junwen Jiang,&nbsp;Jiameng Li,&nbsp;Siliang Liu,&nbsp;Chuang Wang,&nbsp;Zhengtao Yu,&nbsp;Ying Xia\",\"doi\":\"10.1111/jnc.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Parkinson's disease (PD) is a neurodegenerative disorder that gets exacerbated by vascular injury. Neural stem cell-derived exosomes (NSC-Exos) display effective neuroprotective properties in PD models. Cell division control protein 42 (CDC42) is connected to angiogenesis, but its effects in PD remain undefined. This research aims to reveal the role of CDC42 in PD. First, we applied 1-methyl-4-phenylpyridinium (MPP<sup>+</sup>) to induce the human cerebral microvascular endothelial cells (HCMECs) model and evaluated cell viability and ferroptosis. Then, we characterized NSC-Exos. Next, to appraise the effect of hypoxia-pretreated NSC-Exos (H-NSC-Exos) on the MPP<sup>+</sup>-induced cells model, we examined angiogenesis and ferroptosis in HCMECs. Moreover, we constructed the PD mice model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and tested the behavioral experiments and vascular injury of mice. Furthermore, we examined cellular ferroptosis and angiogenesis after knockdown of CDC42. Additionally, we investigated the interaction of CDC42 with Acyl-CoA synthetase long-chain family member 4 (ACSL4) and detected cellular ferroptosis and angiogenesis after overexpression of ACSL4. We found that H-NSC-Exos reversed the MPP<sup>+</sup>-induced decrease in HCMECs viability and migration, lowered lipid-reactive oxygen species (lipid-ROS) levels, suppressed ferroptosis, and facilitated angiogenesis. Moreover, H-NSC-Exos attenuated MPTP-induced PD development, vascular injury, and ferroptosis in mice. H-NSC-Exos with the knockdown of CDC42 reduced cell viability and angiogenesis and raised ferroptosis and lipid-ROS levels, which were reversed by ferrostatin-1 and liproxstatin-1. CDC42 interacted with ACSL4. Furthermore, overexpression of ACSL4 aggravated the above effects of H-NSC-Exos in which CDC42 was knocked down. Our study reveals that H-NSC-Exos-derived CDC42 inhibited ACSL4-related ferroptosis to alleviate vascular injury in PD mice models. CDC42 may serve as a potent therapeutic target for PD treatment.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\\n </div>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\"169 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70027\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70027","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是一种神经退行性疾病,会因血管损伤而恶化。神经干细胞衍生外泌体(NSC-Exos)在PD模型中显示出有效的神经保护特性。细胞分裂控制蛋白42 (CDC42)与血管生成有关,但其在帕金森病中的作用尚不清楚。本研究旨在揭示CDC42在PD中的作用。首先,我们应用1-甲基-4-苯基吡啶(MPP+)诱导人大脑微血管内皮细胞(HCMECs)模型,并评估细胞活力和铁凋亡。然后,我们对NSC-Exos进行了表征。接下来,为了评估缺氧预处理的NSC-Exos (H-NSC-Exos)对MPP+诱导的细胞模型的影响,我们检测了hcmes的血管生成和铁凋亡。此外,我们用1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)构建PD小鼠模型,并对小鼠的行为实验和血管损伤进行了测试。此外,我们还检测了敲低CDC42后的细胞铁下垂和血管生成。此外,我们研究了CDC42与酰基辅酶a合成酶长链家族成员4 (ACSL4)的相互作用,并检测了ACSL4过表达后的细胞铁下垂和血管生成。我们发现,H-NSC-Exos逆转了MPP+诱导的HCMECs活力和迁移的下降,降低了脂质活性氧(脂质- ros)水平,抑制了铁下垂,促进了血管生成。此外,H-NSC-Exos可减轻mptp诱导的小鼠PD的发生、血管损伤和铁下垂。敲低CDC42的H-NSC-Exos降低了细胞活力和血管生成,提高了ferroptosis和脂质ros水平,这一现象被ferrostatin-1和liproxstatin-1逆转。CDC42与ACSL4相互作用。此外,ACSL4的过表达加重了CDC42被敲低的H-NSC-Exos的上述作用。我们的研究表明,h - nsc - exos来源的CDC42抑制acsl4相关的铁下垂,减轻PD小鼠模型的血管损伤。CDC42可能作为PD治疗的有效靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exosome-Derived CDC42 From Hypoxia-Pretreated Neural Stem Cells Inhibits ACSL4-Related Ferroptosis to Alleviate Vascular Injury in Parkinson's Disease Mice Models

Exosome-Derived CDC42 From Hypoxia-Pretreated Neural Stem Cells Inhibits ACSL4-Related Ferroptosis to Alleviate Vascular Injury in Parkinson's Disease Mice Models

Parkinson's disease (PD) is a neurodegenerative disorder that gets exacerbated by vascular injury. Neural stem cell-derived exosomes (NSC-Exos) display effective neuroprotective properties in PD models. Cell division control protein 42 (CDC42) is connected to angiogenesis, but its effects in PD remain undefined. This research aims to reveal the role of CDC42 in PD. First, we applied 1-methyl-4-phenylpyridinium (MPP+) to induce the human cerebral microvascular endothelial cells (HCMECs) model and evaluated cell viability and ferroptosis. Then, we characterized NSC-Exos. Next, to appraise the effect of hypoxia-pretreated NSC-Exos (H-NSC-Exos) on the MPP+-induced cells model, we examined angiogenesis and ferroptosis in HCMECs. Moreover, we constructed the PD mice model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and tested the behavioral experiments and vascular injury of mice. Furthermore, we examined cellular ferroptosis and angiogenesis after knockdown of CDC42. Additionally, we investigated the interaction of CDC42 with Acyl-CoA synthetase long-chain family member 4 (ACSL4) and detected cellular ferroptosis and angiogenesis after overexpression of ACSL4. We found that H-NSC-Exos reversed the MPP+-induced decrease in HCMECs viability and migration, lowered lipid-reactive oxygen species (lipid-ROS) levels, suppressed ferroptosis, and facilitated angiogenesis. Moreover, H-NSC-Exos attenuated MPTP-induced PD development, vascular injury, and ferroptosis in mice. H-NSC-Exos with the knockdown of CDC42 reduced cell viability and angiogenesis and raised ferroptosis and lipid-ROS levels, which were reversed by ferrostatin-1 and liproxstatin-1. CDC42 interacted with ACSL4. Furthermore, overexpression of ACSL4 aggravated the above effects of H-NSC-Exos in which CDC42 was knocked down. Our study reveals that H-NSC-Exos-derived CDC42 inhibited ACSL4-related ferroptosis to alleviate vascular injury in PD mice models. CDC42 may serve as a potent therapeutic target for PD treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信