二氧化碳精炼厂:对可持续高酒精生产的增值过程的关键审查

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Subhasis Das , Ganapati D. Yadav
{"title":"二氧化碳精炼厂:对可持续高酒精生产的增值过程的关键审查","authors":"Subhasis Das ,&nbsp;Ganapati D. Yadav","doi":"10.1039/d4cy00870g","DOIUrl":null,"url":null,"abstract":"<div><div>The CO<sub>2</sub> refinery concept is vital for achieving net zero emission goal. Transforming CO<sub>2</sub> into fuels, chemicals, and materials offers an encouraging and profitable solution alongside renewable energy and green hydrogen. Higher alcohols (C<sub>2</sub>–C<sub>4</sub> alcohols) are essential in modern society and extensively used in the production of chemicals, solvents, and fuels. Even though bioethanol production from biomass is established, transforming CO<sub>2</sub> into higher alcohols presents a more sustainable and green initiative. Nevertheless, challenges like breaking the stable C–O bond in CO<sub>2</sub> and regulating C–C coupling in higher alcohol synthesis (HAS) make the process unfavourable. The present review highlights all the advancements in CO<sub>2</sub> hydrogenation for higher alcohol production, focusing on both the direct and indirect routes, catalytic systems, and efficient processes in both batch and fixed-bed reactors. Addressing these challenges will guide the development of efficient catalysts and processes for sustainable CO<sub>2</sub> utilization, supporting a greener future.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 5","pages":"Pages 1294-1338"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon dioxide refinery: critical review of valorisation processes into sustainable higher alcohol production\",\"authors\":\"Subhasis Das ,&nbsp;Ganapati D. Yadav\",\"doi\":\"10.1039/d4cy00870g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The CO<sub>2</sub> refinery concept is vital for achieving net zero emission goal. Transforming CO<sub>2</sub> into fuels, chemicals, and materials offers an encouraging and profitable solution alongside renewable energy and green hydrogen. Higher alcohols (C<sub>2</sub>–C<sub>4</sub> alcohols) are essential in modern society and extensively used in the production of chemicals, solvents, and fuels. Even though bioethanol production from biomass is established, transforming CO<sub>2</sub> into higher alcohols presents a more sustainable and green initiative. Nevertheless, challenges like breaking the stable C–O bond in CO<sub>2</sub> and regulating C–C coupling in higher alcohol synthesis (HAS) make the process unfavourable. The present review highlights all the advancements in CO<sub>2</sub> hydrogenation for higher alcohol production, focusing on both the direct and indirect routes, catalytic systems, and efficient processes in both batch and fixed-bed reactors. Addressing these challenges will guide the development of efficient catalysts and processes for sustainable CO<sub>2</sub> utilization, supporting a greener future.</div></div>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\"15 5\",\"pages\":\"Pages 1294-1338\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2044475324006907\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324006907","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳精炼厂的概念对于实现净零排放目标至关重要。将二氧化碳转化为燃料、化学品和材料,与可再生能源和绿色氢一样,是一个令人鼓舞且有利可图的解决方案。高级醇(C2-C4醇)在现代社会中是必不可少的,广泛用于生产化学品、溶剂和燃料。尽管从生物质中生产生物乙醇已经确立,但将二氧化碳转化为高级酒精是一项更具可持续性和绿色的举措。然而,诸如破坏CO2中稳定的C-O键和调节高级醇合成(HAS)中的C-C偶联等挑战使该过程变得不利。本综述重点介绍了用于生产更高酒精的CO2加氢的所有进展,重点是直接和间接途径、催化系统以及间歇式和固定床反应器中的高效工艺。解决这些挑战将指导高效催化剂和可持续二氧化碳利用工艺的发展,支持更绿色的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon dioxide refinery: critical review of valorisation processes into sustainable higher alcohol production

Carbon dioxide refinery: critical review of valorisation processes into sustainable higher alcohol production
The CO2 refinery concept is vital for achieving net zero emission goal. Transforming CO2 into fuels, chemicals, and materials offers an encouraging and profitable solution alongside renewable energy and green hydrogen. Higher alcohols (C2–C4 alcohols) are essential in modern society and extensively used in the production of chemicals, solvents, and fuels. Even though bioethanol production from biomass is established, transforming CO2 into higher alcohols presents a more sustainable and green initiative. Nevertheless, challenges like breaking the stable C–O bond in CO2 and regulating C–C coupling in higher alcohol synthesis (HAS) make the process unfavourable. The present review highlights all the advancements in CO2 hydrogenation for higher alcohol production, focusing on both the direct and indirect routes, catalytic systems, and efficient processes in both batch and fixed-bed reactors. Addressing these challenges will guide the development of efficient catalysts and processes for sustainable CO2 utilization, supporting a greener future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信