扩展+:非iid数据联邦学习中的可扩展模型聚合

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Huanghuang Liang;Xin Yang;Xiaoming Han;Boan Liu;Chuang Hu;Dan Wang;Xiaobo Zhou;Dazhao Cheng
{"title":"扩展+:非iid数据联邦学习中的可扩展模型聚合","authors":"Huanghuang Liang;Xin Yang;Xiaoming Han;Boan Liu;Chuang Hu;Dan Wang;Xiaobo Zhou;Dazhao Cheng","doi":"10.1109/TPDS.2025.3539738","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) addresses privacy concerns by training models without sharing raw data, overcoming the limitations of traditional machine learning paradigms. However, the rise of smart applications has accentuated the heterogeneity in data and devices, which presents significant challenges for FL. In particular, data skewness among participants can compromise model accuracy, while diverse device capabilities lead to aggregation bottlenecks, causing severe model congestion. In this article, we introduce Spread+, a hierarchical system that enhances FL by organizing clients into clusters and delegating model aggregation to edge devices, thus mitigating these challenges. Spread+ leverages hedonic coalition formation game to optimize customer organization and adaptive algorithms to regulate aggregation intervals within and across clusters. Moreover, it refines the aggregation algorithm to boost model accuracy. Our experiments demonstrate that Spread+ significantly alleviates the central aggregation bottleneck and surpasses mainstream benchmarks, achieving performance improvements of 49.58% over FAVG and 22.78% over Ring-allreduce.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 4","pages":"701-716"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spread+: Scalable Model Aggregation in Federated Learning With Non-IID Data\",\"authors\":\"Huanghuang Liang;Xin Yang;Xiaoming Han;Boan Liu;Chuang Hu;Dan Wang;Xiaobo Zhou;Dazhao Cheng\",\"doi\":\"10.1109/TPDS.2025.3539738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) addresses privacy concerns by training models without sharing raw data, overcoming the limitations of traditional machine learning paradigms. However, the rise of smart applications has accentuated the heterogeneity in data and devices, which presents significant challenges for FL. In particular, data skewness among participants can compromise model accuracy, while diverse device capabilities lead to aggregation bottlenecks, causing severe model congestion. In this article, we introduce Spread+, a hierarchical system that enhances FL by organizing clients into clusters and delegating model aggregation to edge devices, thus mitigating these challenges. Spread+ leverages hedonic coalition formation game to optimize customer organization and adaptive algorithms to regulate aggregation intervals within and across clusters. Moreover, it refines the aggregation algorithm to boost model accuracy. Our experiments demonstrate that Spread+ significantly alleviates the central aggregation bottleneck and surpasses mainstream benchmarks, achieving performance improvements of 49.58% over FAVG and 22.78% over Ring-allreduce.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 4\",\"pages\":\"701-716\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891369/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891369/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)通过在不共享原始数据的情况下训练模型来解决隐私问题,克服了传统机器学习范式的局限性。然而,智能应用的兴起加剧了数据和设备的异质性,这给人工智能带来了重大挑战。特别是,参与者之间的数据偏度会损害模型的准确性,而不同的设备功能会导致聚合瓶颈,导致严重的模型拥塞。在本文中,我们将介绍Spread+,这是一个分层系统,它通过将客户机组织到集群中并将模型聚合委托给边缘设备来增强FL,从而减轻了这些挑战。Spread+利用享乐联盟形成博弈优化客户组织,利用自适应算法调节集群内和集群间的聚集间隔。此外,改进了聚合算法,提高了模型的精度。我们的实验表明,Spread+显著缓解了中心聚合瓶颈,并超过了主流基准测试,比FAVG提高了49.58%,比Ring-allreduce提高了22.78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spread+: Scalable Model Aggregation in Federated Learning With Non-IID Data
Federated learning (FL) addresses privacy concerns by training models without sharing raw data, overcoming the limitations of traditional machine learning paradigms. However, the rise of smart applications has accentuated the heterogeneity in data and devices, which presents significant challenges for FL. In particular, data skewness among participants can compromise model accuracy, while diverse device capabilities lead to aggregation bottlenecks, causing severe model congestion. In this article, we introduce Spread+, a hierarchical system that enhances FL by organizing clients into clusters and delegating model aggregation to edge devices, thus mitigating these challenges. Spread+ leverages hedonic coalition formation game to optimize customer organization and adaptive algorithms to regulate aggregation intervals within and across clusters. Moreover, it refines the aggregation algorithm to boost model accuracy. Our experiments demonstrate that Spread+ significantly alleviates the central aggregation bottleneck and surpasses mainstream benchmarks, achieving performance improvements of 49.58% over FAVG and 22.78% over Ring-allreduce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信