基于点积特征分析的火电厂动态过程监控

IF 19.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xin Ma;Tao Chen;Youqing Wang
{"title":"基于点积特征分析的火电厂动态过程监控","authors":"Xin Ma;Tao Chen;Youqing Wang","doi":"10.1109/JAS.2024.124908","DOIUrl":null,"url":null,"abstract":"Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems, such as thermal power plants being studied in this work. Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms. Mainstream dynamic algorithms rely on concatenating current measurement with past data. This work proposes a new, alternative dynamic process monitoring algorithm, using dot product feature analysis (DPFA). DPFA computes the dot product of consecutive samples, thus naturally capturing the process dynamics through temporal correlation. At the same time, DPFA's online computational complexity is lower than not just existing dynamic algorithms, but also classical static algorithms (e.g., principal component analysis and slow feature analysis). The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems: sensor bias, process fault and gain change fault. Through experiments with a numerical example and real data from a thermal power plant, the DPFA algorithm is shown to be superior to the state-of-the-art methods, in terms of better monitoring performance (fault detection rate and false alarm rate) and lower computational complexity.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 3","pages":"563-574"},"PeriodicalIF":19.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Process Monitoring Based on Dot Product Feature Analysis for Thermal Power Plants\",\"authors\":\"Xin Ma;Tao Chen;Youqing Wang\",\"doi\":\"10.1109/JAS.2024.124908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems, such as thermal power plants being studied in this work. Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms. Mainstream dynamic algorithms rely on concatenating current measurement with past data. This work proposes a new, alternative dynamic process monitoring algorithm, using dot product feature analysis (DPFA). DPFA computes the dot product of consecutive samples, thus naturally capturing the process dynamics through temporal correlation. At the same time, DPFA's online computational complexity is lower than not just existing dynamic algorithms, but also classical static algorithms (e.g., principal component analysis and slow feature analysis). The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems: sensor bias, process fault and gain change fault. Through experiments with a numerical example and real data from a thermal power plant, the DPFA algorithm is shown to be superior to the state-of-the-art methods, in terms of better monitoring performance (fault detection rate and false alarm rate) and lower computational complexity.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"12 3\",\"pages\":\"563-574\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909330/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10909330/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的过程监控是保证现代制造和能源系统安全运行的有效途径,如本文所研究的火电厂。工业过程本质上是动态的,需要使用动态算法进行监控。主流的动态算法依赖于将当前测量与过去数据连接起来。这项工作提出了一个新的,替代动态过程监测算法,使用点积特征分析(DPFA)。DPFA计算连续样本的点积,从而自然地通过时间相关性捕获过程动态。同时,DPFA的在线计算复杂度不仅低于现有的动态算法,也低于经典的静态算法(如主成分分析和慢特征分析)。针对过程系统中常见的三种故障:传感器偏置故障、过程故障和增益变化故障,分析了新算法的可检测性。通过数值算例和火电厂实际数据的实验,DPFA算法在监测性能(故障检出率和虚警率)和计算复杂度方面均优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Process Monitoring Based on Dot Product Feature Analysis for Thermal Power Plants
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems, such as thermal power plants being studied in this work. Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms. Mainstream dynamic algorithms rely on concatenating current measurement with past data. This work proposes a new, alternative dynamic process monitoring algorithm, using dot product feature analysis (DPFA). DPFA computes the dot product of consecutive samples, thus naturally capturing the process dynamics through temporal correlation. At the same time, DPFA's online computational complexity is lower than not just existing dynamic algorithms, but also classical static algorithms (e.g., principal component analysis and slow feature analysis). The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems: sensor bias, process fault and gain change fault. Through experiments with a numerical example and real data from a thermal power plant, the DPFA algorithm is shown to be superior to the state-of-the-art methods, in terms of better monitoring performance (fault detection rate and false alarm rate) and lower computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信