(n + 1)流形与双里奇曲率的同调n收缩

IF 1.5 1区 数学 Q1 MATHEMATICS
Jianchun Chu , Man-Chun Lee , Jintian Zhu
{"title":"(n + 1)流形与双里奇曲率的同调n收缩","authors":"Jianchun Chu ,&nbsp;Man-Chun Lee ,&nbsp;Jintian Zhu","doi":"10.1016/j.aim.2025.110187","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove an optimal systolic inequality and the corresponding rigidity in the equality case on closed manifolds with positive bi-Ricci curvature, which generalizes the work of Bray-Brendle-Neves in <span><span>[3]</span></span>. The proof is given in all dimensions based on the method of minimal surfaces under the Generic Regularity Hypothesis, which is known to be true up to dimension ten.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"467 ","pages":"Article 110187"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homological n-systole in (n + 1)-manifolds and bi-Ricci curvature\",\"authors\":\"Jianchun Chu ,&nbsp;Man-Chun Lee ,&nbsp;Jintian Zhu\",\"doi\":\"10.1016/j.aim.2025.110187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove an optimal systolic inequality and the corresponding rigidity in the equality case on closed manifolds with positive bi-Ricci curvature, which generalizes the work of Bray-Brendle-Neves in <span><span>[3]</span></span>. The proof is given in all dimensions based on the method of minimal surfaces under the Generic Regularity Hypothesis, which is known to be true up to dimension ten.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"467 \",\"pages\":\"Article 110187\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000854\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000854","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文在具有正bi-Ricci曲率的闭流形上证明了一个最优收缩不等式及其在相等情况下的刚性,推广了Bray-Brendle-Neves在[3]中的工作。基于一般正则性假设下的最小曲面方法,在所有维度上给出了证明,该证明在十维之前是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological n-systole in (n + 1)-manifolds and bi-Ricci curvature
In this paper, we prove an optimal systolic inequality and the corresponding rigidity in the equality case on closed manifolds with positive bi-Ricci curvature, which generalizes the work of Bray-Brendle-Neves in [3]. The proof is given in all dimensions based on the method of minimal surfaces under the Generic Regularity Hypothesis, which is known to be true up to dimension ten.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信