{"title":"利用伪标签提高农作物图像识别性能","authors":"Pengfei Deng, Zhaohui Jiang, Huimin Ma, Yuan Rao, Wu Zhang","doi":"10.1016/j.inpa.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>In crop image recognition, when faced with a large quantity of unlabeled data, the traditional manual labeling method requires a large amount of human and material resources. To solve this problem, this study proposes an image recognition method based on a pseudolabeling technique. First, the data are divided into labeled and unlabeled data. The initial network model is trained on labeled data. Then, pseudolabeling of the unlabeled data is predicted, and only the data that satisfy the confidence threshold are regarded as valid pseudolabeling. To convert the unlabeled data into supervised training data, the two types of data are mixed. The training is terminated when the number of remaining unlabeled data satisfies the end condition and when the fivefold cross-validation method is used to evaluate model performance. Compared with the traditional semisupervised method, the experimental method is simpler and more applicable. Experiments were conducted on rice growth stage recognition and crop weed seedling recognition tasks. The results showed that the proposed method achieved 99.17% accuracy in rice growth stage recognition and a high AUC value of 99.93% in crop weed seedling recognition, which demonstrated excellent performance. Compared with the traditional model, this method not only improves in accuracy but also has better stability and wider applicability and is expected to provide an efficient, accurate and scalable solution for crop image recognition.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 1","pages":"Pages 17-26"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving crop image recognition performance using pseudolabels\",\"authors\":\"Pengfei Deng, Zhaohui Jiang, Huimin Ma, Yuan Rao, Wu Zhang\",\"doi\":\"10.1016/j.inpa.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In crop image recognition, when faced with a large quantity of unlabeled data, the traditional manual labeling method requires a large amount of human and material resources. To solve this problem, this study proposes an image recognition method based on a pseudolabeling technique. First, the data are divided into labeled and unlabeled data. The initial network model is trained on labeled data. Then, pseudolabeling of the unlabeled data is predicted, and only the data that satisfy the confidence threshold are regarded as valid pseudolabeling. To convert the unlabeled data into supervised training data, the two types of data are mixed. The training is terminated when the number of remaining unlabeled data satisfies the end condition and when the fivefold cross-validation method is used to evaluate model performance. Compared with the traditional semisupervised method, the experimental method is simpler and more applicable. Experiments were conducted on rice growth stage recognition and crop weed seedling recognition tasks. The results showed that the proposed method achieved 99.17% accuracy in rice growth stage recognition and a high AUC value of 99.93% in crop weed seedling recognition, which demonstrated excellent performance. Compared with the traditional model, this method not only improves in accuracy but also has better stability and wider applicability and is expected to provide an efficient, accurate and scalable solution for crop image recognition.</div></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"12 1\",\"pages\":\"Pages 17-26\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317324000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improving crop image recognition performance using pseudolabels
In crop image recognition, when faced with a large quantity of unlabeled data, the traditional manual labeling method requires a large amount of human and material resources. To solve this problem, this study proposes an image recognition method based on a pseudolabeling technique. First, the data are divided into labeled and unlabeled data. The initial network model is trained on labeled data. Then, pseudolabeling of the unlabeled data is predicted, and only the data that satisfy the confidence threshold are regarded as valid pseudolabeling. To convert the unlabeled data into supervised training data, the two types of data are mixed. The training is terminated when the number of remaining unlabeled data satisfies the end condition and when the fivefold cross-validation method is used to evaluate model performance. Compared with the traditional semisupervised method, the experimental method is simpler and more applicable. Experiments were conducted on rice growth stage recognition and crop weed seedling recognition tasks. The results showed that the proposed method achieved 99.17% accuracy in rice growth stage recognition and a high AUC value of 99.93% in crop weed seedling recognition, which demonstrated excellent performance. Compared with the traditional model, this method not only improves in accuracy but also has better stability and wider applicability and is expected to provide an efficient, accurate and scalable solution for crop image recognition.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining