KPAMA:基于 Kubernetes 的缓解 ML 系统老化的工具

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Wenjie Ding , Zhihao Liu , Xuhui Lu , Xiaoting Du , Zheng Zheng
{"title":"KPAMA:基于 Kubernetes 的缓解 ML 系统老化的工具","authors":"Wenjie Ding ,&nbsp;Zhihao Liu ,&nbsp;Xuhui Lu ,&nbsp;Xiaoting Du ,&nbsp;Zheng Zheng","doi":"10.1016/j.jss.2025.112389","DOIUrl":null,"url":null,"abstract":"<div><div>As machine learning (ML) systems continue to evolve and be applied, their user base and system size also expand. This expansion is particularly evident with the widespread adoption of large language models. Currently, the infrastructure supporting ML systems, such as cloud services and computing hardware, which are increasingly becoming foundational to the ML system environment, is increasingly adopted to support continuous training and inference services. Nevertheless, it has been shown that the increased data volume, complexity of computations, and extended run times challenge the stability of ML systems, efficiency, and availability, precipitating system aging. To address this issue, we develop a novel solution, KPAMA, leveraging Kubernetes, the leading container orchestration platform, to enhance the autoscaling of computing workflows and resources, effectively mitigating system aging. KPAMA employs a hybrid model to predict key aging metrics and uses decision and anti-oscillation algorithms to achieve system resource autoscaling. Our experiments indicate that KPAMA markedly mitigates system aging and enhances task reliability compared to the standard Horizontal Pod Autoscaler and systems without scaling capabilities.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"226 ","pages":"Article 112389"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KPAMA: A Kubernetes based tool for Mitigating ML system Aging\",\"authors\":\"Wenjie Ding ,&nbsp;Zhihao Liu ,&nbsp;Xuhui Lu ,&nbsp;Xiaoting Du ,&nbsp;Zheng Zheng\",\"doi\":\"10.1016/j.jss.2025.112389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As machine learning (ML) systems continue to evolve and be applied, their user base and system size also expand. This expansion is particularly evident with the widespread adoption of large language models. Currently, the infrastructure supporting ML systems, such as cloud services and computing hardware, which are increasingly becoming foundational to the ML system environment, is increasingly adopted to support continuous training and inference services. Nevertheless, it has been shown that the increased data volume, complexity of computations, and extended run times challenge the stability of ML systems, efficiency, and availability, precipitating system aging. To address this issue, we develop a novel solution, KPAMA, leveraging Kubernetes, the leading container orchestration platform, to enhance the autoscaling of computing workflows and resources, effectively mitigating system aging. KPAMA employs a hybrid model to predict key aging metrics and uses decision and anti-oscillation algorithms to achieve system resource autoscaling. Our experiments indicate that KPAMA markedly mitigates system aging and enhances task reliability compared to the standard Horizontal Pod Autoscaler and systems without scaling capabilities.</div></div>\",\"PeriodicalId\":51099,\"journal\":{\"name\":\"Journal of Systems and Software\",\"volume\":\"226 \",\"pages\":\"Article 112389\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems and Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0164121225000573\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000573","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
KPAMA: A Kubernetes based tool for Mitigating ML system Aging
As machine learning (ML) systems continue to evolve and be applied, their user base and system size also expand. This expansion is particularly evident with the widespread adoption of large language models. Currently, the infrastructure supporting ML systems, such as cloud services and computing hardware, which are increasingly becoming foundational to the ML system environment, is increasingly adopted to support continuous training and inference services. Nevertheless, it has been shown that the increased data volume, complexity of computations, and extended run times challenge the stability of ML systems, efficiency, and availability, precipitating system aging. To address this issue, we develop a novel solution, KPAMA, leveraging Kubernetes, the leading container orchestration platform, to enhance the autoscaling of computing workflows and resources, effectively mitigating system aging. KPAMA employs a hybrid model to predict key aging metrics and uses decision and anti-oscillation algorithms to achieve system resource autoscaling. Our experiments indicate that KPAMA markedly mitigates system aging and enhances task reliability compared to the standard Horizontal Pod Autoscaler and systems without scaling capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信