Lu Zhao, Jian Wang, Wanchun Yang, Canqing Zhang, Weiwei Zhang and Jianzhong Chen
{"title":"通过基于GaMD轨迹的深度学习了解磷酸化诱导对CDK6构象和抑制剂结合的影响","authors":"Lu Zhao, Jian Wang, Wanchun Yang, Canqing Zhang, Weiwei Zhang and Jianzhong Chen","doi":"10.1039/D4CP04579C","DOIUrl":null,"url":null,"abstract":"<p >The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 13","pages":" 6546-6562"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into phosphorylation-induced influences on conformations and inhibitor binding of CDK6 through GaMD trajectory-based deep learning†\",\"authors\":\"Lu Zhao, Jian Wang, Wanchun Yang, Canqing Zhang, Weiwei Zhang and Jianzhong Chen\",\"doi\":\"10.1039/D4CP04579C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 13\",\"pages\":\" 6546-6562\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04579c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04579c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Insights into phosphorylation-induced influences on conformations and inhibitor binding of CDK6 through GaMD trajectory-based deep learning†
The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.