通过基于GaMD轨迹的深度学习了解磷酸化诱导对CDK6构象和抑制剂结合的影响

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Lu Zhao, Jian Wang, Wanchun Yang, Canqing Zhang, Weiwei Zhang and Jianzhong Chen
{"title":"通过基于GaMD轨迹的深度学习了解磷酸化诱导对CDK6构象和抑制剂结合的影响","authors":"Lu Zhao, Jian Wang, Wanchun Yang, Canqing Zhang, Weiwei Zhang and Jianzhong Chen","doi":"10.1039/D4CP04579C","DOIUrl":null,"url":null,"abstract":"<p >The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 13","pages":" 6546-6562"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into phosphorylation-induced influences on conformations and inhibitor binding of CDK6 through GaMD trajectory-based deep learning†\",\"authors\":\"Lu Zhao, Jian Wang, Wanchun Yang, Canqing Zhang, Weiwei Zhang and Jianzhong Chen\",\"doi\":\"10.1039/D4CP04579C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 13\",\"pages\":\" 6546-6562\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04579c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04579c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

残基T177的磷酸化对CDK6的构象动力学有显著影响。采用高斯加速分子动力学(GaMD)模拟并辅以深度学习(DL),探索磷酸化介导的CDK6构象动力学的分子机制。DL研究发现,β-片、αC螺旋以及t -环参与了明显的构象接触差异,提示t -环在CDK6的功能中起着关键作用。自由能分析(FELs)表明,T177的磷酸化导致t -环构象的改变,主成分分析(PCA)结果表明,磷酸化影响CDK6中β-片和t -环的波动行为。通过对抑制剂与CDK6相互作用网络的分析,发现6ZV与CDK6的氢结合相互作用(hbi)较多,相互作用热点较多。我们的MM-GBSA计算表明,6ZV与CDK6的结合能力强于6ZZ和0RS。我们期望这项工作能为进一步了解CDK6的功能和开发新的靶向CDK6的抑制剂提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insights into phosphorylation-induced influences on conformations and inhibitor binding of CDK6 through GaMD trajectory-based deep learning†

Insights into phosphorylation-induced influences on conformations and inhibitor binding of CDK6 through GaMD trajectory-based deep learning†

The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of T177 leads to alterations of the T-loop conformation and the results from principal component analysis (PCA) indicate that the phosphorylation affects the fluctuation behavior of the β-sheets and the T-loop in CDK6. Interaction networks of inhibitors with CDK6 were analyzed and the information reveals that 6ZV contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. Our MM-GBSA calculations suggest that the binding ability of 6ZV to CDK6 is stronger than 6ZZ and 0RS. We anticipate that this work could provide useful information for further understanding of CDK6 function and developing new promising inhibitors targeting CDK6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信