富硫空位CdS在可见光下可调CO2光还原的形态调控

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Lu-Wen Qiu, Wen-Ni Zhang, Lin-Ying Wang, Hao Li, Tian-Kuan Zhang, Mi-Xin Lin, Su-Qin Ci and Jian Lü
{"title":"富硫空位CdS在可见光下可调CO2光还原的形态调控","authors":"Lu-Wen Qiu, Wen-Ni Zhang, Lin-Ying Wang, Hao Li, Tian-Kuan Zhang, Mi-Xin Lin, Su-Qin Ci and Jian Lü","doi":"10.1039/D5QI00290G","DOIUrl":null,"url":null,"abstract":"<p >In this work, morphological control with a series of sulfur-vacancy-rich CdS photocatalysts has been achieved toward the optimization of their performances in CO<small><sub>2</sub></small> photoreduction. Results show that sulfur-vacancy-rich CdS nano-platelets (p-CdS-Vs) exhibit the highest CO<small><sub>2</sub></small> photoreduction activity with a CO yield of 4058.5 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, which is 10 and 6 times those of sulfur-vacancy-rich CdS nanowires (w-CdS-Vs, 372.8 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) and nanorods (r-CdS-Vs, 638.7 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>), respectively, amongst the highest numbers for CdS-based photocatalysts reported hitherto. The superior CO<small><sub>2</sub></small> photoreduction performance of p-CdS-Vs is attributable to its high efficiency of electron transport and suppressed recombination of photogenerated charge carriers. A mechanistic study indicates the critical role of surface sulfur vacancies that provide a microenvironment to trap unpaired electrons for the separation of photogenerated carriers so that the photocatalytic efficiency of CO<small><sub>2</sub></small>-to-CO reduction is largely improved in this current system.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 8","pages":" 3110-3117"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological regulation of sulfur-vacancy-rich CdS for tunable CO2 photoreduction under visible light irradiation†\",\"authors\":\"Lu-Wen Qiu, Wen-Ni Zhang, Lin-Ying Wang, Hao Li, Tian-Kuan Zhang, Mi-Xin Lin, Su-Qin Ci and Jian Lü\",\"doi\":\"10.1039/D5QI00290G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this work, morphological control with a series of sulfur-vacancy-rich CdS photocatalysts has been achieved toward the optimization of their performances in CO<small><sub>2</sub></small> photoreduction. Results show that sulfur-vacancy-rich CdS nano-platelets (p-CdS-Vs) exhibit the highest CO<small><sub>2</sub></small> photoreduction activity with a CO yield of 4058.5 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>, which is 10 and 6 times those of sulfur-vacancy-rich CdS nanowires (w-CdS-Vs, 372.8 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) and nanorods (r-CdS-Vs, 638.7 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>), respectively, amongst the highest numbers for CdS-based photocatalysts reported hitherto. The superior CO<small><sub>2</sub></small> photoreduction performance of p-CdS-Vs is attributable to its high efficiency of electron transport and suppressed recombination of photogenerated charge carriers. A mechanistic study indicates the critical role of surface sulfur vacancies that provide a microenvironment to trap unpaired electrons for the separation of photogenerated carriers so that the photocatalytic efficiency of CO<small><sub>2</sub></small>-to-CO reduction is largely improved in this current system.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 8\",\"pages\":\" 3110-3117\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00290g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00290g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究对一系列富硫空位CdS光催化剂进行了形态控制,以优化其CO2光还原性能。结果表明,富硫空位CdS纳米薄片(p-CdS-Vs)具有最高的CO2光还原活性,CO产率为4058.5 μmol h-1 g-1,分别是富硫空位CdS纳米线(w-CdS-Vs, 372.8 μmol h-1 g-1)和纳米棒(r-CdS-Vs, 638.7 μmol h-1 g-1)的10倍和6倍,是目前报道的CdS基光催化剂中最高的。p-CdS-Vs具有优异的CO2光还原性能,这是由于它具有高效的电子传递和抑制光生载流子的复合。机理研究表明,表面硫空位提供了一个微环境来捕获未配对电子,用于光生载流子的分离,从而在当前体系中大大提高了CO2-to-CO还原的光催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morphological regulation of sulfur-vacancy-rich CdS for tunable CO2 photoreduction under visible light irradiation†

Morphological regulation of sulfur-vacancy-rich CdS for tunable CO2 photoreduction under visible light irradiation†

In this work, morphological control with a series of sulfur-vacancy-rich CdS photocatalysts has been achieved toward the optimization of their performances in CO2 photoreduction. Results show that sulfur-vacancy-rich CdS nano-platelets (p-CdS-Vs) exhibit the highest CO2 photoreduction activity with a CO yield of 4058.5 μmol h−1 g−1, which is 10 and 6 times those of sulfur-vacancy-rich CdS nanowires (w-CdS-Vs, 372.8 μmol h−1 g−1) and nanorods (r-CdS-Vs, 638.7 μmol h−1 g−1), respectively, amongst the highest numbers for CdS-based photocatalysts reported hitherto. The superior CO2 photoreduction performance of p-CdS-Vs is attributable to its high efficiency of electron transport and suppressed recombination of photogenerated charge carriers. A mechanistic study indicates the critical role of surface sulfur vacancies that provide a microenvironment to trap unpaired electrons for the separation of photogenerated carriers so that the photocatalytic efficiency of CO2-to-CO reduction is largely improved in this current system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信