机器学习用于急性胆源性胰腺炎复发风险评估:深度学习MINERVA研究方案

IF 6 1区 医学 Q1 EMERGENCY MEDICINE
Mauro Podda, Adolfo Pisanu, Gianluca Pellino, Adriano De Simone, Lucio Selvaggi, Valentina Murzi, Eleonora Locci, Matteo Rottoli, Giacomo Calini, Stefano Cardelli, Fausto Catena, Carlo Vallicelli, Raffaele Bova, Gabriele Vigutto, Fabrizio D’Acapito, Giorgio Ercolani, Leonardo Solaini, Alan Biloslavo, Paola Germani, Camilla Colutta, Savino Occhionorelli, Domenico Lacavalla, Maria Grazia Sibilla, Stefano Olmi, Matteo Uccelli, Alberto Oldani, Alessio Giordano, Tommaso Guagni, Davina Perini, Francesco Pata, Bruno Nardo, Daniele Paglione, Giusi Franco, Matteo Donadon, Marcello Di Martino, Dario Bruzzese, Daniela Pacella
{"title":"机器学习用于急性胆源性胰腺炎复发风险评估:深度学习MINERVA研究方案","authors":"Mauro Podda, Adolfo Pisanu, Gianluca Pellino, Adriano De Simone, Lucio Selvaggi, Valentina Murzi, Eleonora Locci, Matteo Rottoli, Giacomo Calini, Stefano Cardelli, Fausto Catena, Carlo Vallicelli, Raffaele Bova, Gabriele Vigutto, Fabrizio D’Acapito, Giorgio Ercolani, Leonardo Solaini, Alan Biloslavo, Paola Germani, Camilla Colutta, Savino Occhionorelli, Domenico Lacavalla, Maria Grazia Sibilla, Stefano Olmi, Matteo Uccelli, Alberto Oldani, Alessio Giordano, Tommaso Guagni, Davina Perini, Francesco Pata, Bruno Nardo, Daniele Paglione, Giusi Franco, Matteo Donadon, Marcello Di Martino, Dario Bruzzese, Daniela Pacella","doi":"10.1186/s13017-025-00594-7","DOIUrl":null,"url":null,"abstract":"Mild acute biliary pancreatitis (MABP) presents significant clinical and economic challenges due to its potential for relapse. Current guidelines advocate for early cholecystectomy (EC) during the same hospital admission to prevent recurrent acute pancreatitis (RAP). Despite these recommendations, implementation in clinical practice varies, highlighting the need for reliable and accessible predictive tools. The MINERVA study aims to develop and validate a machine learning (ML) model to predict the risk of RAP (at 30, 60, 90 days, and at 1-year) in MABP patients, enhancing decision-making processes. The MINERVA study will be conducted across multiple academic and community hospitals in Italy. Adult patients with a clinical diagnosis of MABP, in accordance with the revised Atlanta Criteria, who have not undergone EC during index admission will be included. Exclusion criteria encompass non-biliary aetiology, severe pancreatitis, and the inability to provide informed consent. The study involves both retrospective data from the MANCTRA-1 study and prospective data collection. Data will be captured using REDCap. The ML model will utilise convolutional neural networks (CNN) for feature extraction and risk prediction. The model includes the following steps: the spatial transformation of variables using kernel Principal Component Analysis (kPCA), the creation of 2D images from transformed data, the application of convolutional filters, max-pooling, flattening, and final risk prediction via a fully connected layer. Performance metrics such as accuracy, precision, recall, and area under the ROC curve (AUC) will be used to evaluate the model. The MINERVA study aims to address the specific gap in predicting RAP risk in MABP patients by leveraging advanced ML techniques. By incorporating a wide range of clinical and demographic variables, the MINERVA score aims to provide a reliable, cost-effective, and accessible tool for healthcare professionals. The project emphasises the practical application of AI in clinical settings, potentially reducing the incidence of RAP and associated healthcare costs. ClinicalTrials.gov ID: NCT06124989.","PeriodicalId":48867,"journal":{"name":"World Journal of Emergency Surgery","volume":"1 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for the rElapse risk eValuation in acute biliary pancreatitis: The deep learning MINERVA study protocol\",\"authors\":\"Mauro Podda, Adolfo Pisanu, Gianluca Pellino, Adriano De Simone, Lucio Selvaggi, Valentina Murzi, Eleonora Locci, Matteo Rottoli, Giacomo Calini, Stefano Cardelli, Fausto Catena, Carlo Vallicelli, Raffaele Bova, Gabriele Vigutto, Fabrizio D’Acapito, Giorgio Ercolani, Leonardo Solaini, Alan Biloslavo, Paola Germani, Camilla Colutta, Savino Occhionorelli, Domenico Lacavalla, Maria Grazia Sibilla, Stefano Olmi, Matteo Uccelli, Alberto Oldani, Alessio Giordano, Tommaso Guagni, Davina Perini, Francesco Pata, Bruno Nardo, Daniele Paglione, Giusi Franco, Matteo Donadon, Marcello Di Martino, Dario Bruzzese, Daniela Pacella\",\"doi\":\"10.1186/s13017-025-00594-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mild acute biliary pancreatitis (MABP) presents significant clinical and economic challenges due to its potential for relapse. Current guidelines advocate for early cholecystectomy (EC) during the same hospital admission to prevent recurrent acute pancreatitis (RAP). Despite these recommendations, implementation in clinical practice varies, highlighting the need for reliable and accessible predictive tools. The MINERVA study aims to develop and validate a machine learning (ML) model to predict the risk of RAP (at 30, 60, 90 days, and at 1-year) in MABP patients, enhancing decision-making processes. The MINERVA study will be conducted across multiple academic and community hospitals in Italy. Adult patients with a clinical diagnosis of MABP, in accordance with the revised Atlanta Criteria, who have not undergone EC during index admission will be included. Exclusion criteria encompass non-biliary aetiology, severe pancreatitis, and the inability to provide informed consent. The study involves both retrospective data from the MANCTRA-1 study and prospective data collection. Data will be captured using REDCap. The ML model will utilise convolutional neural networks (CNN) for feature extraction and risk prediction. The model includes the following steps: the spatial transformation of variables using kernel Principal Component Analysis (kPCA), the creation of 2D images from transformed data, the application of convolutional filters, max-pooling, flattening, and final risk prediction via a fully connected layer. Performance metrics such as accuracy, precision, recall, and area under the ROC curve (AUC) will be used to evaluate the model. The MINERVA study aims to address the specific gap in predicting RAP risk in MABP patients by leveraging advanced ML techniques. By incorporating a wide range of clinical and demographic variables, the MINERVA score aims to provide a reliable, cost-effective, and accessible tool for healthcare professionals. The project emphasises the practical application of AI in clinical settings, potentially reducing the incidence of RAP and associated healthcare costs. ClinicalTrials.gov ID: NCT06124989.\",\"PeriodicalId\":48867,\"journal\":{\"name\":\"World Journal of Emergency Surgery\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Emergency Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13017-025-00594-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EMERGENCY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Emergency Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13017-025-00594-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

轻度急性胆源性胰腺炎(MABP)由于其复发的可能性,提出了重大的临床和经济挑战。目前的指南提倡在同一住院期间进行早期胆囊切除术(EC),以预防复发性急性胰腺炎(RAP)。尽管有这些建议,但在临床实践中的实施情况各不相同,这突出了对可靠和可获得的预测工具的需求。MINERVA研究旨在开发和验证机器学习(ML)模型,以预测MABP患者RAP(30、60、90天和1年)的风险,从而增强决策过程。MINERVA研究将在意大利的多家学术和社区医院进行。临床诊断为MABP的成年患者,根据修订的亚特兰大标准,在索引入院期间未接受EC的患者将被纳入。排除标准包括非胆道病因、严重胰腺炎和无法提供知情同意。该研究包括来自mancta -1研究的回顾性数据和前瞻性数据收集。数据将使用REDCap捕获。机器学习模型将利用卷积神经网络(CNN)进行特征提取和风险预测。该模型包括以下步骤:使用核主成分分析(kPCA)对变量进行空间变换,从转换后的数据创建2D图像,应用卷积滤波器,最大池化,平坦化,并通过全连接层进行最终风险预测。准确度、精密度、召回率和ROC曲线下面积(AUC)等性能指标将用于评估模型。MINERVA研究旨在通过利用先进的ML技术来解决预测MABP患者RAP风险的具体差距。通过纳入广泛的临床和人口变量,MINERVA评分旨在为医疗保健专业人员提供可靠、具有成本效益和可访问的工具。该项目强调人工智能在临床环境中的实际应用,可能会降低RAP的发生率和相关的医疗成本。ClinicalTrials.gov ID: NCT06124989。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for the rElapse risk eValuation in acute biliary pancreatitis: The deep learning MINERVA study protocol
Mild acute biliary pancreatitis (MABP) presents significant clinical and economic challenges due to its potential for relapse. Current guidelines advocate for early cholecystectomy (EC) during the same hospital admission to prevent recurrent acute pancreatitis (RAP). Despite these recommendations, implementation in clinical practice varies, highlighting the need for reliable and accessible predictive tools. The MINERVA study aims to develop and validate a machine learning (ML) model to predict the risk of RAP (at 30, 60, 90 days, and at 1-year) in MABP patients, enhancing decision-making processes. The MINERVA study will be conducted across multiple academic and community hospitals in Italy. Adult patients with a clinical diagnosis of MABP, in accordance with the revised Atlanta Criteria, who have not undergone EC during index admission will be included. Exclusion criteria encompass non-biliary aetiology, severe pancreatitis, and the inability to provide informed consent. The study involves both retrospective data from the MANCTRA-1 study and prospective data collection. Data will be captured using REDCap. The ML model will utilise convolutional neural networks (CNN) for feature extraction and risk prediction. The model includes the following steps: the spatial transformation of variables using kernel Principal Component Analysis (kPCA), the creation of 2D images from transformed data, the application of convolutional filters, max-pooling, flattening, and final risk prediction via a fully connected layer. Performance metrics such as accuracy, precision, recall, and area under the ROC curve (AUC) will be used to evaluate the model. The MINERVA study aims to address the specific gap in predicting RAP risk in MABP patients by leveraging advanced ML techniques. By incorporating a wide range of clinical and demographic variables, the MINERVA score aims to provide a reliable, cost-effective, and accessible tool for healthcare professionals. The project emphasises the practical application of AI in clinical settings, potentially reducing the incidence of RAP and associated healthcare costs. ClinicalTrials.gov ID: NCT06124989.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Emergency Surgery
World Journal of Emergency Surgery EMERGENCY MEDICINE-SURGERY
CiteScore
14.50
自引率
5.00%
发文量
60
审稿时长
10 weeks
期刊介绍: The World Journal of Emergency Surgery is an open access, peer-reviewed journal covering all facets of clinical and basic research in traumatic and non-traumatic emergency surgery and related fields. Topics include emergency surgery, acute care surgery, trauma surgery, intensive care, trauma management, and resuscitation, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信