一种基于通用病毒衣壳蛋白的一步RNA合成和包装系统,用于快速高效的mRNA疫苗开发。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Molecular Therapy Pub Date : 2025-04-02 Epub Date: 2025-02-28 DOI:10.1016/j.ymthe.2025.02.037
Jiayue Su, Jinsong Zhang, Xiangning Feng, Jinsong Liu, Shan Gao, Xinrui Liu, Mingwei Yang, Zeliang Chen
{"title":"一种基于通用病毒衣壳蛋白的一步RNA合成和包装系统,用于快速高效的mRNA疫苗开发。","authors":"Jiayue Su, Jinsong Zhang, Xiangning Feng, Jinsong Liu, Shan Gao, Xinrui Liu, Mingwei Yang, Zeliang Chen","doi":"10.1016/j.ymthe.2025.02.037","DOIUrl":null,"url":null,"abstract":"<p><p>The success of coronavirus disease 2019 mRNA vaccines highlights the transformative potential of mRNA technology. Current mRNA vaccine development involves complex steps, including plasmid construction, RNA transcription, 5' capping, poly(A) tailing, and lipid nanoparticle encapsulation, yet challenges in vaccine accessibility persist. Here, we present an innovative mRNA platform leveraging the self-assembly capabilities of the MS2 bacteriophage viral capsid protein (VCP). A dual-promoter plasmid has been designed where one promoter drives VCP expression while the other transcribes target RNA containing pac sites, enabling rapid mRNA self-assembly in Escherichia coli. Using an ovalbumin (OVA)-based tumor model, we validate the efficacy of this system. Tumor growth is significantly inhibited, accompanied by robust immune activation. Flow cytometry analyses reveal increased frequencies of OVA-specific CD8<sup>+</sup>, as well as activated and memory T cells. Additionally, the MS2-OVA vaccine favorably modulated the tumor immunosuppressive microenvironment by reducing myeloid-derived suppressor cells, while sustained antibody responses demonstrated the platform's ability to induce durable humoral immunity. These findings establish the feasibility of one-step mRNA synthesis and packaging in E. coli, providing a versatile and rapid platform for mRNA vaccine development, with broad implications for addressing global vaccination challenges.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":"1720-1734"},"PeriodicalIF":12.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal viral capsid protein based one step RNA synthesis and packaging system for rapid and efficient mRNA vaccine development.\",\"authors\":\"Jiayue Su, Jinsong Zhang, Xiangning Feng, Jinsong Liu, Shan Gao, Xinrui Liu, Mingwei Yang, Zeliang Chen\",\"doi\":\"10.1016/j.ymthe.2025.02.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The success of coronavirus disease 2019 mRNA vaccines highlights the transformative potential of mRNA technology. Current mRNA vaccine development involves complex steps, including plasmid construction, RNA transcription, 5' capping, poly(A) tailing, and lipid nanoparticle encapsulation, yet challenges in vaccine accessibility persist. Here, we present an innovative mRNA platform leveraging the self-assembly capabilities of the MS2 bacteriophage viral capsid protein (VCP). A dual-promoter plasmid has been designed where one promoter drives VCP expression while the other transcribes target RNA containing pac sites, enabling rapid mRNA self-assembly in Escherichia coli. Using an ovalbumin (OVA)-based tumor model, we validate the efficacy of this system. Tumor growth is significantly inhibited, accompanied by robust immune activation. Flow cytometry analyses reveal increased frequencies of OVA-specific CD8<sup>+</sup>, as well as activated and memory T cells. Additionally, the MS2-OVA vaccine favorably modulated the tumor immunosuppressive microenvironment by reducing myeloid-derived suppressor cells, while sustained antibody responses demonstrated the platform's ability to induce durable humoral immunity. These findings establish the feasibility of one-step mRNA synthesis and packaging in E. coli, providing a versatile and rapid platform for mRNA vaccine development, with broad implications for addressing global vaccination challenges.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"1720-1734\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2025.02.037\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19 mRNA疫苗的成功凸显了mRNA技术的变革潜力。目前mRNA疫苗的开发涉及复杂的步骤,包括质粒构建、RNA转录、5'封顶、聚(A)尾链和脂质纳米颗粒包封,但疫苗可及性仍然存在挑战。在这里,我们提出了一个创新的mRNA平台,利用MS2噬菌体病毒衣壳蛋白(VCP)的自组装能力。设计了一种双启动子质粒,其中一个启动子驱动VCP表达,而另一个启动子转录含有pac位点的靶RNA,使mRNA在大肠杆菌中快速自组装。使用基于卵清蛋白(OVA)的肿瘤模型,我们验证了该系统的有效性。肿瘤生长明显受到抑制,并伴有强大的免疫激活。流式细胞术分析显示ova特异性CD8+以及活化和记忆T细胞的频率增加。此外,MS2-OVA疫苗通过减少髓源性抑制细胞,有利于调节肿瘤免疫抑制微环境,而持续的抗体反应表明该平台能够诱导持久的体液免疫。这些发现确定了在大肠杆菌中一步合成和包装mRNA的可行性,为mRNA疫苗开发提供了一个通用和快速的平台,对应对全球疫苗接种挑战具有广泛意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A universal viral capsid protein based one step RNA synthesis and packaging system for rapid and efficient mRNA vaccine development.

The success of coronavirus disease 2019 mRNA vaccines highlights the transformative potential of mRNA technology. Current mRNA vaccine development involves complex steps, including plasmid construction, RNA transcription, 5' capping, poly(A) tailing, and lipid nanoparticle encapsulation, yet challenges in vaccine accessibility persist. Here, we present an innovative mRNA platform leveraging the self-assembly capabilities of the MS2 bacteriophage viral capsid protein (VCP). A dual-promoter plasmid has been designed where one promoter drives VCP expression while the other transcribes target RNA containing pac sites, enabling rapid mRNA self-assembly in Escherichia coli. Using an ovalbumin (OVA)-based tumor model, we validate the efficacy of this system. Tumor growth is significantly inhibited, accompanied by robust immune activation. Flow cytometry analyses reveal increased frequencies of OVA-specific CD8+, as well as activated and memory T cells. Additionally, the MS2-OVA vaccine favorably modulated the tumor immunosuppressive microenvironment by reducing myeloid-derived suppressor cells, while sustained antibody responses demonstrated the platform's ability to induce durable humoral immunity. These findings establish the feasibility of one-step mRNA synthesis and packaging in E. coli, providing a versatile and rapid platform for mRNA vaccine development, with broad implications for addressing global vaccination challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信