Arnaud Driussi , Fabien C. Lamaze , Manal Kordahi , Victoria Saavedra Armero , Nathalie Gaudreault , Michèle Orain , William Enlow , Chris Abbosh , Darren Hodgson , Abhijit Dasgupta , Andréanne Gagné , Yohan Bossé , Philippe Joubert
{"title":"早期非小细胞肺癌血液循环肿瘤 DNA 存在的临床病理预测因素。","authors":"Arnaud Driussi , Fabien C. Lamaze , Manal Kordahi , Victoria Saavedra Armero , Nathalie Gaudreault , Michèle Orain , William Enlow , Chris Abbosh , Darren Hodgson , Abhijit Dasgupta , Andréanne Gagné , Yohan Bossé , Philippe Joubert","doi":"10.1016/j.modpat.2025.100744","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of lung cancer screening programs across the world has drawn considerable attention to improving early-stage lung cancer detection and prognostication. Several blood-based assays detecting circulating tumor DNA (ctDNA) recently emerged as noninvasive methods to detect malignancies. However, their limited sensitivity and predictive value remain a hurdle to their clinical use. We aimed to evaluate the association between clinicopathological parameters and presurgical ctDNA detection in clinical stage I non–small cell lung cancer patients to further understand ctDNA shedding biology. The cohort included 180 adenocarcinomas (LUAD) and 80 squamous cell carcinomas (LUSC) stage I patients who underwent lung cancer resection. Patients’ clinical and pathological features were collected. A multicancer early-detection test (GRAIL LLC) was used to detect ctDNA using targeted methylation patterns. The association between the cell-free DNA tumor methylated fraction (TMeF) and the clinicopathological predictors was evaluated using univariate and multivariate modeling. LUSC was associated with a higher TMeF than LUAD. Pathological stage, tumor grade, and tumor volume were key determinants of ctDNA detection in both LUSC and LUAD. In LUAD, ctDNA detection also correlated with histologic pattern composition, necrosis, acute inflammation, and, to a lesser degree, spread through alveolar spaces and lymphovascular invasion. Based on our results, we propose classification methods for both LUAD (using histologic pattern composition) and LUSC (using tumor grade and pathological stage) to identify patients likely to have high ctDNA levels. These results confirm previous findings and suggest that previously unidentified factors, including histologic pattern composition and acute inflammation, influence ctDNA levels. These results will help in understanding the ctDNA shedding process and may allow identification of patients eligible for ctDNA detection–based follow-up.</div></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":"38 6","pages":"Article 100744"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinicopathological Predictors of the Presence of Blood Circulating Tumor DNA in Early-Stage Non–Small Cell Lung Cancers\",\"authors\":\"Arnaud Driussi , Fabien C. Lamaze , Manal Kordahi , Victoria Saavedra Armero , Nathalie Gaudreault , Michèle Orain , William Enlow , Chris Abbosh , Darren Hodgson , Abhijit Dasgupta , Andréanne Gagné , Yohan Bossé , Philippe Joubert\",\"doi\":\"10.1016/j.modpat.2025.100744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The implementation of lung cancer screening programs across the world has drawn considerable attention to improving early-stage lung cancer detection and prognostication. Several blood-based assays detecting circulating tumor DNA (ctDNA) recently emerged as noninvasive methods to detect malignancies. However, their limited sensitivity and predictive value remain a hurdle to their clinical use. We aimed to evaluate the association between clinicopathological parameters and presurgical ctDNA detection in clinical stage I non–small cell lung cancer patients to further understand ctDNA shedding biology. The cohort included 180 adenocarcinomas (LUAD) and 80 squamous cell carcinomas (LUSC) stage I patients who underwent lung cancer resection. Patients’ clinical and pathological features were collected. A multicancer early-detection test (GRAIL LLC) was used to detect ctDNA using targeted methylation patterns. The association between the cell-free DNA tumor methylated fraction (TMeF) and the clinicopathological predictors was evaluated using univariate and multivariate modeling. LUSC was associated with a higher TMeF than LUAD. Pathological stage, tumor grade, and tumor volume were key determinants of ctDNA detection in both LUSC and LUAD. In LUAD, ctDNA detection also correlated with histologic pattern composition, necrosis, acute inflammation, and, to a lesser degree, spread through alveolar spaces and lymphovascular invasion. Based on our results, we propose classification methods for both LUAD (using histologic pattern composition) and LUSC (using tumor grade and pathological stage) to identify patients likely to have high ctDNA levels. These results confirm previous findings and suggest that previously unidentified factors, including histologic pattern composition and acute inflammation, influence ctDNA levels. These results will help in understanding the ctDNA shedding process and may allow identification of patients eligible for ctDNA detection–based follow-up.</div></div>\",\"PeriodicalId\":18706,\"journal\":{\"name\":\"Modern Pathology\",\"volume\":\"38 6\",\"pages\":\"Article 100744\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893395225000407\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395225000407","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Clinicopathological Predictors of the Presence of Blood Circulating Tumor DNA in Early-Stage Non–Small Cell Lung Cancers
The implementation of lung cancer screening programs across the world has drawn considerable attention to improving early-stage lung cancer detection and prognostication. Several blood-based assays detecting circulating tumor DNA (ctDNA) recently emerged as noninvasive methods to detect malignancies. However, their limited sensitivity and predictive value remain a hurdle to their clinical use. We aimed to evaluate the association between clinicopathological parameters and presurgical ctDNA detection in clinical stage I non–small cell lung cancer patients to further understand ctDNA shedding biology. The cohort included 180 adenocarcinomas (LUAD) and 80 squamous cell carcinomas (LUSC) stage I patients who underwent lung cancer resection. Patients’ clinical and pathological features were collected. A multicancer early-detection test (GRAIL LLC) was used to detect ctDNA using targeted methylation patterns. The association between the cell-free DNA tumor methylated fraction (TMeF) and the clinicopathological predictors was evaluated using univariate and multivariate modeling. LUSC was associated with a higher TMeF than LUAD. Pathological stage, tumor grade, and tumor volume were key determinants of ctDNA detection in both LUSC and LUAD. In LUAD, ctDNA detection also correlated with histologic pattern composition, necrosis, acute inflammation, and, to a lesser degree, spread through alveolar spaces and lymphovascular invasion. Based on our results, we propose classification methods for both LUAD (using histologic pattern composition) and LUSC (using tumor grade and pathological stage) to identify patients likely to have high ctDNA levels. These results confirm previous findings and suggest that previously unidentified factors, including histologic pattern composition and acute inflammation, influence ctDNA levels. These results will help in understanding the ctDNA shedding process and may allow identification of patients eligible for ctDNA detection–based follow-up.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.