有机阳离子转运体2:结构、调控、功能和临床意义。

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Metabolism and Disposition Pub Date : 2025-03-01 Epub Date: 2025-01-28 DOI:10.1016/j.dmd.2025.100044
Anoud Ailabouni, Bhagwat Prasad
{"title":"有机阳离子转运体2:结构、调控、功能和临床意义。","authors":"Anoud Ailabouni, Bhagwat Prasad","doi":"10.1016/j.dmd.2025.100044","DOIUrl":null,"url":null,"abstract":"<p><p>The SLC22A2 gene encodes organic cation transporter 2 (OCT2), which is predominantly expressed in renal proximal tubule cells. OCT2 is critical for the active renal excretion of various cationic drugs and endogenous metabolites. OCT2 expression varies across species, with higher levels in mice and monkeys compared with humans and rats. The human OCT2 protein consists of 555 amino acids and contains 12 transmembrane domains. OCT2 functions as a uniporter, facilitating the bidirectional transport of organic cations into renal tubular cells, driven by the inside-negative membrane potential. Its expression is regulated by sex hormones, contributing to potential sex differences in Oct2 activity in rodents. OCT2 has been linked to tissue toxicity, such as cisplatin-induced nephrotoxicity. Factors such as genetic variants, age, disease states, and the coadministration of drugs, including tyrosine kinase inhibitors, contribute to interindividual variability in OCT2 activity. This, in turn, impacts the systemic exposure and elimination of drugs and endogenous substances. Regulatory agencies recommend evaluating the potential of a drug to inhibit OCT2 through in vitro and clinical drug-drug interaction (DDI) studies, often using metformin as a probe substrate. Emerging tools like transporter biomarkers and physiologically based pharmacokinetic modeling hold promise in predicting OCT2-mediated DDIs. While several OCT2 biomarkers, such as N1-methylnicotinamide, have been proposed, their reliability in predicting renal DDIs remains uncertain and requires further study. Ultimately, a better understanding of the factors influencing OCT2 activity is essential for achieving precision medicine and minimizing renal and systemic toxicity. SIGNIFICANCE STATEMENT: Organic cation transporter 2 (OCT2) is essential for the active tubular secretion of xenobiotics and endogenous cationic substances in the kidneys. This article offers a comprehensive overview of the tissue distribution, interspecies differences, and factors affecting its activity-critical for evaluating tissue toxicity and systemic exposure to cationic substances. Using OCT2 biomarkers and integrating OCT2 activity and expression data into physiologically based pharmacokinetic models are valuable tools for predicting OCT2 function and its clinical implications.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":"53 3","pages":"100044"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic cation transporters 2: Structure, regulation, functions, and clinical implications.\",\"authors\":\"Anoud Ailabouni, Bhagwat Prasad\",\"doi\":\"10.1016/j.dmd.2025.100044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SLC22A2 gene encodes organic cation transporter 2 (OCT2), which is predominantly expressed in renal proximal tubule cells. OCT2 is critical for the active renal excretion of various cationic drugs and endogenous metabolites. OCT2 expression varies across species, with higher levels in mice and monkeys compared with humans and rats. The human OCT2 protein consists of 555 amino acids and contains 12 transmembrane domains. OCT2 functions as a uniporter, facilitating the bidirectional transport of organic cations into renal tubular cells, driven by the inside-negative membrane potential. Its expression is regulated by sex hormones, contributing to potential sex differences in Oct2 activity in rodents. OCT2 has been linked to tissue toxicity, such as cisplatin-induced nephrotoxicity. Factors such as genetic variants, age, disease states, and the coadministration of drugs, including tyrosine kinase inhibitors, contribute to interindividual variability in OCT2 activity. This, in turn, impacts the systemic exposure and elimination of drugs and endogenous substances. Regulatory agencies recommend evaluating the potential of a drug to inhibit OCT2 through in vitro and clinical drug-drug interaction (DDI) studies, often using metformin as a probe substrate. Emerging tools like transporter biomarkers and physiologically based pharmacokinetic modeling hold promise in predicting OCT2-mediated DDIs. While several OCT2 biomarkers, such as N1-methylnicotinamide, have been proposed, their reliability in predicting renal DDIs remains uncertain and requires further study. Ultimately, a better understanding of the factors influencing OCT2 activity is essential for achieving precision medicine and minimizing renal and systemic toxicity. SIGNIFICANCE STATEMENT: Organic cation transporter 2 (OCT2) is essential for the active tubular secretion of xenobiotics and endogenous cationic substances in the kidneys. This article offers a comprehensive overview of the tissue distribution, interspecies differences, and factors affecting its activity-critical for evaluating tissue toxicity and systemic exposure to cationic substances. Using OCT2 biomarkers and integrating OCT2 activity and expression data into physiologically based pharmacokinetic models are valuable tools for predicting OCT2 function and its clinical implications.</p>\",\"PeriodicalId\":11309,\"journal\":{\"name\":\"Drug Metabolism and Disposition\",\"volume\":\"53 3\",\"pages\":\"100044\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Metabolism and Disposition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dmd.2025.100044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dmd.2025.100044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

SLC22A2基因编码有机阳离子转运蛋白2 (OCT2), OCT2主要在肾近端小管细胞中表达。OCT2对于各种阳离子药物和内源性代谢物的肾脏主动排泄至关重要。OCT2的表达因物种而异,小鼠和猴子的表达水平高于人类和大鼠。人OCT2蛋白由555个氨基酸组成,包含12个跨膜结构域。OCT2作为一种单向转运体,在内负膜电位的驱动下,促进有机阳离子双向转运进入肾小管细胞。它的表达受性激素的调节,导致啮齿类动物中Oct2活性的潜在性别差异。OCT2与组织毒性有关,如顺铂引起的肾毒性。遗传变异、年龄、疾病状态和包括酪氨酸激酶抑制剂在内的药物共同给药等因素导致OCT2活性的个体间差异。这反过来又影响药物和内源性物质的全身暴露和消除。监管机构建议通过体外和临床药物-药物相互作用(DDI)研究评估药物抑制OCT2的潜力,通常使用二甲双胍作为探针底物。新兴工具,如转运体生物标志物和基于生理的药代动力学模型,有望预测oct2介导的ddi。虽然已经提出了几种OCT2生物标志物,如n1 -甲基烟酰胺,但其预测肾脏ddi的可靠性仍不确定,需要进一步研究。最终,更好地了解影响OCT2活性的因素对于实现精准医疗和最小化肾脏和全身毒性至关重要。意义声明:有机阳离子转运蛋白2 (OCT2)对于肾脏内外源性和内源性阳离子物质的活性小管分泌至关重要。本文全面概述了组织分布、种间差异和影响其活性的因素,这对评估组织毒性和全身暴露于阳离子物质至关重要。利用OCT2生物标志物,将OCT2活性和表达数据整合到基于生理学的药代动力学模型中,是预测OCT2功能及其临床意义的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Organic cation transporters 2: Structure, regulation, functions, and clinical implications.

The SLC22A2 gene encodes organic cation transporter 2 (OCT2), which is predominantly expressed in renal proximal tubule cells. OCT2 is critical for the active renal excretion of various cationic drugs and endogenous metabolites. OCT2 expression varies across species, with higher levels in mice and monkeys compared with humans and rats. The human OCT2 protein consists of 555 amino acids and contains 12 transmembrane domains. OCT2 functions as a uniporter, facilitating the bidirectional transport of organic cations into renal tubular cells, driven by the inside-negative membrane potential. Its expression is regulated by sex hormones, contributing to potential sex differences in Oct2 activity in rodents. OCT2 has been linked to tissue toxicity, such as cisplatin-induced nephrotoxicity. Factors such as genetic variants, age, disease states, and the coadministration of drugs, including tyrosine kinase inhibitors, contribute to interindividual variability in OCT2 activity. This, in turn, impacts the systemic exposure and elimination of drugs and endogenous substances. Regulatory agencies recommend evaluating the potential of a drug to inhibit OCT2 through in vitro and clinical drug-drug interaction (DDI) studies, often using metformin as a probe substrate. Emerging tools like transporter biomarkers and physiologically based pharmacokinetic modeling hold promise in predicting OCT2-mediated DDIs. While several OCT2 biomarkers, such as N1-methylnicotinamide, have been proposed, their reliability in predicting renal DDIs remains uncertain and requires further study. Ultimately, a better understanding of the factors influencing OCT2 activity is essential for achieving precision medicine and minimizing renal and systemic toxicity. SIGNIFICANCE STATEMENT: Organic cation transporter 2 (OCT2) is essential for the active tubular secretion of xenobiotics and endogenous cationic substances in the kidneys. This article offers a comprehensive overview of the tissue distribution, interspecies differences, and factors affecting its activity-critical for evaluating tissue toxicity and systemic exposure to cationic substances. Using OCT2 biomarkers and integrating OCT2 activity and expression data into physiologically based pharmacokinetic models are valuable tools for predicting OCT2 function and its clinical implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信