IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Fanyi Meng , Mengqiu Ma , Shanshan Li , Pan Liang , Yunfei Liang , Hongyan Shi , Shudi Huang , Huai Su , Yilin Deng , Muhammad Asif Akram , Xiaoxia Shen , Ru Feng , Xiangqiang Zhan , Fang Ma
{"title":"Genome-wide identification of light-harvesting chlorophyll a/b-binding (LHC) gene family in tomato and functional analysis of SlLhcb1.11 and SlELIP1 under cold stress","authors":"Fanyi Meng ,&nbsp;Mengqiu Ma ,&nbsp;Shanshan Li ,&nbsp;Pan Liang ,&nbsp;Yunfei Liang ,&nbsp;Hongyan Shi ,&nbsp;Shudi Huang ,&nbsp;Huai Su ,&nbsp;Yilin Deng ,&nbsp;Muhammad Asif Akram ,&nbsp;Xiaoxia Shen ,&nbsp;Ru Feng ,&nbsp;Xiangqiang Zhan ,&nbsp;Fang Ma","doi":"10.1016/j.ygeno.2025.111022","DOIUrl":null,"url":null,"abstract":"<div><div>Light-harvesting chlorophyll a/b-binding (LHC) proteins, as the antenna complex, collect and transfer light energy to the reaction centers of PSII. They are crucial for abiotic stress responses, especially in the photoprotection under cold stress. However, members of the <em>LHC</em> gene family in tomato (<em>Solanum lycopersicum</em> L.) have not yet been identified. In this study, a total of 39 SlLHC proteins containing the chlorophyll a/b binding domain or light-harvesting-like domain were identified, and classified into four subfamilies: Lhc, Lil, PsbS, and FCII. Further qRT-PCR analysis showed <em>SlLhcb1.11</em> was inhibited and <em>SlELIP1</em> was induced at low temperature (4 °C). Subsequently, the result of VIGS experiment showed that silencing <em>SlLhcb1.11</em> or <em>SlELIP1</em> genes resulted in lighter leaf color, reduced chlorophyll content, compromised photosynthesis, and decreased cold tolerance in tomato plants. These findings offer novel insights into the structure and function of <em>SlLHC</em> genes, thereby contributing to genetic resources for the development of cold-tolerant tomato germplasm.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"117 2","pages":"Article 111022"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754325000382","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采光叶绿素 a/结合蛋白(LHC)作为天线复合体,收集光能并将其传递到 PSII 的反应中心。它们对于非生物胁迫响应,尤其是冷胁迫下的光保护至关重要。然而,番茄(Solanum lycopersicum L.)中的 LHC 基因家族成员尚未确定。本研究共鉴定了 39 个含有叶绿素 a/b 结合结构域或类采光结构域的 SlLHC 蛋白,并将其分为四个亚家族:Lhc、Lil、PsbS 和 FCII。进一步的 qRT-PCR 分析表明,在低温(4 °C)条件下,SlLhcb1.11 被抑制,SlELIP1 被诱导。随后的 VIGS 实验结果表明,沉默 SlLhcb1.11 或 SlELIP1 基因会导致番茄植株叶色变浅、叶绿素含量降低、光合作用受影响以及耐寒性下降。这些发现为了解 SlLHC 基因的结构和功能提供了新的视角,从而为开发耐寒番茄种质资源做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide identification of light-harvesting chlorophyll a/b-binding (LHC) gene family in tomato and functional analysis of SlLhcb1.11 and SlELIP1 under cold stress
Light-harvesting chlorophyll a/b-binding (LHC) proteins, as the antenna complex, collect and transfer light energy to the reaction centers of PSII. They are crucial for abiotic stress responses, especially in the photoprotection under cold stress. However, members of the LHC gene family in tomato (Solanum lycopersicum L.) have not yet been identified. In this study, a total of 39 SlLHC proteins containing the chlorophyll a/b binding domain or light-harvesting-like domain were identified, and classified into four subfamilies: Lhc, Lil, PsbS, and FCII. Further qRT-PCR analysis showed SlLhcb1.11 was inhibited and SlELIP1 was induced at low temperature (4 °C). Subsequently, the result of VIGS experiment showed that silencing SlLhcb1.11 or SlELIP1 genes resulted in lighter leaf color, reduced chlorophyll content, compromised photosynthesis, and decreased cold tolerance in tomato plants. These findings offer novel insights into the structure and function of SlLHC genes, thereby contributing to genetic resources for the development of cold-tolerant tomato germplasm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信