IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Liang Dong, Michael G Malkowski
{"title":"Coupling Subunit-Specific States to Allosteric Regulation in Homodimeric Cyclooxygenase-2.","authors":"Liang Dong, Michael G Malkowski","doi":"10.1021/acs.biochem.4c00821","DOIUrl":null,"url":null,"abstract":"<p><p>The homodimeric cyclooxygenase enzymes (COX-1 and COX-2) oxygenate arachidonic acid (AA) to generate prostaglandins. COX-2 behaves as a conformational heterodimer in solution comprised of allosteric (<i>E</i><sub>allo</sub>) and catalytic (<i>E</i><sub>cat</sub>) subunits that function cooperatively. We previously utilized <sup>19</sup>F-nuclear magnetic resonance spectroscopy (<sup>19</sup>F-NMR) to show that the cyclooxygenase active site entrances in a COX-2 homodimer construct exhibited composite tightened and relaxed states that are dependent upon the type of ligand bound. A third state, hypothesized to represent the alteration of a loop comprised of residues 120-129, was also detected in the presence of ligands that allosterically potentiate activity. We report here studies that couple the use of <sup>19</sup>F-NMR with COX-2 heterodimer constructs to characterize states arising in the individual subunits. Glycine and proline substitutions at Ser-121 were introduced to examine how these mutations alter the 120-129 loop. In the presence of AA, the subunits exhibited asymmetry, with tightened and relaxed states observed in <i>E</i><sub>allo</sub> and <i>E</i><sub>cat</sub>, respectively. Allosteric ligand binding resulted in a shift to equivalent symmetrical states, with tightened states observed in the presence of the allosteric inhibitor flurbiprofen and relaxed states observed in the presence of the allosteric potentiator palmitic acid. The S121P substitution results in a shift to equivalent relaxed states, as well as an alteration of the 120-129 loop in the absence of bound ligand. We put forth a model linking the observed differential states arising from allosteric ligand binding with structural transitions across the dimer interface that govern the regulation of cyclooxygenase activity.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00821","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

同源二聚体环氧化酶(COX-1 和 COX-2)将花生四烯酸(AA)加氧生成前列腺素。COX-2 在溶液中表现为一种构象异构二聚体,由异构亚基(Eallo)和催化亚基(Ecat)组成,两者协同发挥作用。我们之前利用 19F 核磁共振波谱(19F-NMR)显示,COX-2 同源二聚体构建体中的环氧化酶活性位点入口呈现出复合紧缩和松弛状态,这取决于结合配体的类型。第三种状态是由残基 120-129 组成的环路发生了变化,在存在异位增效配体的情况下也能检测到这种状态。我们在此报告的研究将 19F-NMR 与 COX-2 异源二聚体构建物结合使用,以描述单个亚基中出现的状态。我们在 Ser-121 处引入了甘氨酸和脯氨酸取代,以研究这些突变如何改变 120-129 环。在 AA 的存在下,亚基表现出不对称性,在 Eallo 和 Ecat 中分别观察到收紧和松弛状态。异构配体结合导致向等效对称状态转变,在异构抑制剂氟比洛芬存在时观察到收紧状态,而在异构增效剂棕榈酸存在时观察到松弛状态。S121P 取代导致向等效松弛状态转变,以及在没有结合配体的情况下改变 120-129 环。我们提出了一个模型,将所观察到的异构配体结合产生的不同状态与二聚体界面上的结构转变联系起来,从而调节环氧化酶的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Subunit-Specific States to Allosteric Regulation in Homodimeric Cyclooxygenase-2.

The homodimeric cyclooxygenase enzymes (COX-1 and COX-2) oxygenate arachidonic acid (AA) to generate prostaglandins. COX-2 behaves as a conformational heterodimer in solution comprised of allosteric (Eallo) and catalytic (Ecat) subunits that function cooperatively. We previously utilized 19F-nuclear magnetic resonance spectroscopy (19F-NMR) to show that the cyclooxygenase active site entrances in a COX-2 homodimer construct exhibited composite tightened and relaxed states that are dependent upon the type of ligand bound. A third state, hypothesized to represent the alteration of a loop comprised of residues 120-129, was also detected in the presence of ligands that allosterically potentiate activity. We report here studies that couple the use of 19F-NMR with COX-2 heterodimer constructs to characterize states arising in the individual subunits. Glycine and proline substitutions at Ser-121 were introduced to examine how these mutations alter the 120-129 loop. In the presence of AA, the subunits exhibited asymmetry, with tightened and relaxed states observed in Eallo and Ecat, respectively. Allosteric ligand binding resulted in a shift to equivalent symmetrical states, with tightened states observed in the presence of the allosteric inhibitor flurbiprofen and relaxed states observed in the presence of the allosteric potentiator palmitic acid. The S121P substitution results in a shift to equivalent relaxed states, as well as an alteration of the 120-129 loop in the absence of bound ligand. We put forth a model linking the observed differential states arising from allosteric ligand binding with structural transitions across the dimer interface that govern the regulation of cyclooxygenase activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信