{"title":"具有刚性填料渗流框架的玻璃基复合材料的快速裂纹愈合","authors":"Carsten Blaeß, Ralf Müller","doi":"10.1111/jace.20386","DOIUrl":null,"url":null,"abstract":"<p>To ensure the durability of solid oxide fuel cell sealants, the understanding of the microstructural influence on viscous crack healing is essential. To this end, the effect of microstructure with respect to the spatial distribution of filler particles on viscous crack healing was studied with confocal laser scanning microscopy in glass-matrix composites (GMCs) made by mix-milling and sintering of soda-lime magnesium silicate glass and <i>Φ</i> ≈ 6 vol% ZrO<sub>2</sub> chemically inert rigid filler particles. This way, no change in <i>Φ</i> occurred during the crack healing treatments studied on Vickers indentation-induced radial cracks in polished GMC surfaces. Different microstructures were mimicked using different ZrO<sub>2</sub> particle sizes for mix-milling. Unlike coarse ZrO<sub>2</sub> particles, similar in size to the glass particle, fine ZrO<sub>2</sub> particles, much smaller than the glass particles, form a rigid percolation framework (RPF) of ZrO<sub>2</sub> filler particles around the former glass particles or glass particle agglomerates. For this RPF microstructure, crack healing was observed more readily as crack healing retardation phenomena like large-scale crack widening and crack tip rounding were strongly reduced, whereas narrow cracks could still heal locally within the glassy regions.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20386","citationCount":"0","resultStr":"{\"title\":\"Fast crack healing in glass-matrix composites with rigid filler percolation frameworks\",\"authors\":\"Carsten Blaeß, Ralf Müller\",\"doi\":\"10.1111/jace.20386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To ensure the durability of solid oxide fuel cell sealants, the understanding of the microstructural influence on viscous crack healing is essential. To this end, the effect of microstructure with respect to the spatial distribution of filler particles on viscous crack healing was studied with confocal laser scanning microscopy in glass-matrix composites (GMCs) made by mix-milling and sintering of soda-lime magnesium silicate glass and <i>Φ</i> ≈ 6 vol% ZrO<sub>2</sub> chemically inert rigid filler particles. This way, no change in <i>Φ</i> occurred during the crack healing treatments studied on Vickers indentation-induced radial cracks in polished GMC surfaces. Different microstructures were mimicked using different ZrO<sub>2</sub> particle sizes for mix-milling. Unlike coarse ZrO<sub>2</sub> particles, similar in size to the glass particle, fine ZrO<sub>2</sub> particles, much smaller than the glass particles, form a rigid percolation framework (RPF) of ZrO<sub>2</sub> filler particles around the former glass particles or glass particle agglomerates. For this RPF microstructure, crack healing was observed more readily as crack healing retardation phenomena like large-scale crack widening and crack tip rounding were strongly reduced, whereas narrow cracks could still heal locally within the glassy regions.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20386\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20386\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20386","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Fast crack healing in glass-matrix composites with rigid filler percolation frameworks
To ensure the durability of solid oxide fuel cell sealants, the understanding of the microstructural influence on viscous crack healing is essential. To this end, the effect of microstructure with respect to the spatial distribution of filler particles on viscous crack healing was studied with confocal laser scanning microscopy in glass-matrix composites (GMCs) made by mix-milling and sintering of soda-lime magnesium silicate glass and Φ ≈ 6 vol% ZrO2 chemically inert rigid filler particles. This way, no change in Φ occurred during the crack healing treatments studied on Vickers indentation-induced radial cracks in polished GMC surfaces. Different microstructures were mimicked using different ZrO2 particle sizes for mix-milling. Unlike coarse ZrO2 particles, similar in size to the glass particle, fine ZrO2 particles, much smaller than the glass particles, form a rigid percolation framework (RPF) of ZrO2 filler particles around the former glass particles or glass particle agglomerates. For this RPF microstructure, crack healing was observed more readily as crack healing retardation phenomena like large-scale crack widening and crack tip rounding were strongly reduced, whereas narrow cracks could still heal locally within the glassy regions.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.