{"title":"一种鲁棒分层聚类算法用于聚类的自动识别","authors":"Jianwu Long, Qiang Wang, Luping Liu","doi":"10.1007/s10489-025-06376-7","DOIUrl":null,"url":null,"abstract":"<div><p>Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the <i>k</i>NN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust hierarchical clustering algorithm for automatic identification of clusters\",\"authors\":\"Jianwu Long, Qiang Wang, Luping Liu\",\"doi\":\"10.1007/s10489-025-06376-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the <i>k</i>NN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06376-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06376-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A robust hierarchical clustering algorithm for automatic identification of clusters
Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the kNN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.