{"title":"Mechanochemistry of degree two","authors":"Wolfgang Quapp, Josep Maria Bofill","doi":"10.1007/s10910-024-01696-4","DOIUrl":null,"url":null,"abstract":"<div><p>We simplify some proposed formulas for hydrostatic pressure on a molecule by G. Subramanian, N. Mathew and J. Leiding, J. Chem. Phys. <b>143</b>, 134109 (2015). We apply the formulas to an artificial triatom ABC whose potential energy surface is formed by a combination of Morse curves.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 3","pages":"749 - 762"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01696-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01696-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们简化了 G. Subramanian、N. Mathew 和 J. Leiding 提出的分子静水压公式,J. Chem.143, 134109 (2015)。我们将这些公式应用于人工三原子 ABC,其势能面由莫尔斯曲线组合而成。
We simplify some proposed formulas for hydrostatic pressure on a molecule by G. Subramanian, N. Mathew and J. Leiding, J. Chem. Phys. 143, 134109 (2015). We apply the formulas to an artificial triatom ABC whose potential energy surface is formed by a combination of Morse curves.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.