外泌体综述:CAR-T细胞治疗的新前沿

IF 4.8 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
John S. Wang , Samuel J. Schellenberg , Athena Demeros , Adam Y. Lin
{"title":"外泌体综述:CAR-T细胞治疗的新前沿","authors":"John S. Wang ,&nbsp;Samuel J. Schellenberg ,&nbsp;Athena Demeros ,&nbsp;Adam Y. Lin","doi":"10.1016/j.neo.2025.101147","DOIUrl":null,"url":null,"abstract":"<div><div>Exosomes are extracellular vehicles that facilitate intra-cellular communication via transport of critical proteins and genetic material. Every exosome is intrinsically reflective of the cell from which it was derived and can even mimic effector functions of their parent cells. In recent years, with the success of CAR-T therapies, there has been growing interest in characterizing exosomes derived from CAR-T cells. CAR exosomes contain the same cytotoxic granules as their parent cells and have demonstrated significant anti-tumor activity <em>in vitro</em> and in animal models. Moreover, infusion of CAR exosomes in animal models did not generate cytokine release syndrome. Conversely, there are also novel bispecific antibodies which target tumor-derived exosomes in hopes of derailing immunosuppressive pathways mediated by exosomes produced from malignant cells. The two most promising examples include (a) BsE CD73 x EpCAM which binds and inhibits exosomal CD73 to suppress production of immunosuppressant adenosine and (b) BsE CD3 x PD-L1 which targets exosomal PD-L1 within the tumor microenvironment to guide cytotoxic T-cells towards tumor cells. As our understanding of exosome biology continues to evolve, opportunities for advances in cellular therapies will grow in tandem.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"62 ","pages":"Article 101147"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomes in review: A new frontier in CAR-T cell therapies\",\"authors\":\"John S. Wang ,&nbsp;Samuel J. Schellenberg ,&nbsp;Athena Demeros ,&nbsp;Adam Y. Lin\",\"doi\":\"10.1016/j.neo.2025.101147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exosomes are extracellular vehicles that facilitate intra-cellular communication via transport of critical proteins and genetic material. Every exosome is intrinsically reflective of the cell from which it was derived and can even mimic effector functions of their parent cells. In recent years, with the success of CAR-T therapies, there has been growing interest in characterizing exosomes derived from CAR-T cells. CAR exosomes contain the same cytotoxic granules as their parent cells and have demonstrated significant anti-tumor activity <em>in vitro</em> and in animal models. Moreover, infusion of CAR exosomes in animal models did not generate cytokine release syndrome. Conversely, there are also novel bispecific antibodies which target tumor-derived exosomes in hopes of derailing immunosuppressive pathways mediated by exosomes produced from malignant cells. The two most promising examples include (a) BsE CD73 x EpCAM which binds and inhibits exosomal CD73 to suppress production of immunosuppressant adenosine and (b) BsE CD3 x PD-L1 which targets exosomal PD-L1 within the tumor microenvironment to guide cytotoxic T-cells towards tumor cells. As our understanding of exosome biology continues to evolve, opportunities for advances in cellular therapies will grow in tandem.</div></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"62 \",\"pages\":\"Article 101147\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558625000260\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000260","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

外泌体是细胞外载体,通过关键蛋白质和遗传物质的运输促进细胞内通信。每一个外泌体本质上都能反映出它所源自的细胞,甚至可以模仿它们亲本细胞的效应功能。近年来,随着CAR-T疗法的成功,人们对表征来自CAR-T细胞的外泌体越来越感兴趣。CAR外泌体含有与其亲本细胞相同的细胞毒性颗粒,并在体外和动物模型中显示出显著的抗肿瘤活性。此外,在动物模型中输注CAR外泌体不会产生细胞因子释放综合征。相反,也有新的双特异性抗体针对肿瘤来源的外泌体,希望脱离由恶性细胞产生的外泌体介导的免疫抑制途径。两个最有希望的例子包括:(a) BsE CD73 x EpCAM结合并抑制外泌体CD73以抑制免疫抑制剂腺苷的产生;(b) BsE CD3 x PD-L1靶向肿瘤微环境内的外泌体PD-L1,引导细胞毒性t细胞走向肿瘤细胞。随着我们对外泌体生物学的理解不断发展,细胞疗法的发展机会也将随之增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exosomes in review: A new frontier in CAR-T cell therapies
Exosomes are extracellular vehicles that facilitate intra-cellular communication via transport of critical proteins and genetic material. Every exosome is intrinsically reflective of the cell from which it was derived and can even mimic effector functions of their parent cells. In recent years, with the success of CAR-T therapies, there has been growing interest in characterizing exosomes derived from CAR-T cells. CAR exosomes contain the same cytotoxic granules as their parent cells and have demonstrated significant anti-tumor activity in vitro and in animal models. Moreover, infusion of CAR exosomes in animal models did not generate cytokine release syndrome. Conversely, there are also novel bispecific antibodies which target tumor-derived exosomes in hopes of derailing immunosuppressive pathways mediated by exosomes produced from malignant cells. The two most promising examples include (a) BsE CD73 x EpCAM which binds and inhibits exosomal CD73 to suppress production of immunosuppressant adenosine and (b) BsE CD3 x PD-L1 which targets exosomal PD-L1 within the tumor microenvironment to guide cytotoxic T-cells towards tumor cells. As our understanding of exosome biology continues to evolve, opportunities for advances in cellular therapies will grow in tandem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neoplasia
Neoplasia 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
82
审稿时长
26 days
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信