异构网络中个性化元路径生成的跨模态特征共生

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaotong Wu, Liqing Qiu, Weidong Zhao
{"title":"异构网络中个性化元路径生成的跨模态特征共生","authors":"Xiaotong Wu,&nbsp;Liqing Qiu,&nbsp;Weidong Zhao","doi":"10.1016/j.neucom.2025.129780","DOIUrl":null,"url":null,"abstract":"<div><div>In heterogeneous graph neural networks (HGNNs), the capture of intricate relationships among various types of entities is essential to achieve advanced machine learning applications. Heterogeneous Information Networks (HINs), composed of interconnected multi-type nodes and edges, face significant challenges in managing semantic diversity and inherent heterogeneity. Traditional methods, which rely on manually designed meta-paths, struggle to adapt dynamically to personalized needs and often neglect the integration of structural and attribute features. To address these limitations, this paper introduces the Cross-Modal Symbiotic Meta-Path Generator (CSMPG) framework. CSMPG integrates two key modules: a Cross-Modal State Generation Module that encodes node structure and attribute information into task-aware state vectors and a Personalized Meta-Path Generation Module that dynamically generates and refines meta-paths using reinforcement learning. By leveraging downstream task feedback, CSMPG optimizes path selection to maximize performance. The framework effectively balances cross-modal feature integration and semantic diversity, uncovering impactful meta-paths that are often overlooked by traditional approaches. Experimental results demonstrate that CSMPG consistently enhances recommendation quality and significantly outperforms structure-only and predefined-path-based models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129780"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-modal feature symbiosis for personalized meta-path generation in heterogeneous networks\",\"authors\":\"Xiaotong Wu,&nbsp;Liqing Qiu,&nbsp;Weidong Zhao\",\"doi\":\"10.1016/j.neucom.2025.129780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In heterogeneous graph neural networks (HGNNs), the capture of intricate relationships among various types of entities is essential to achieve advanced machine learning applications. Heterogeneous Information Networks (HINs), composed of interconnected multi-type nodes and edges, face significant challenges in managing semantic diversity and inherent heterogeneity. Traditional methods, which rely on manually designed meta-paths, struggle to adapt dynamically to personalized needs and often neglect the integration of structural and attribute features. To address these limitations, this paper introduces the Cross-Modal Symbiotic Meta-Path Generator (CSMPG) framework. CSMPG integrates two key modules: a Cross-Modal State Generation Module that encodes node structure and attribute information into task-aware state vectors and a Personalized Meta-Path Generation Module that dynamically generates and refines meta-paths using reinforcement learning. By leveraging downstream task feedback, CSMPG optimizes path selection to maximize performance. The framework effectively balances cross-modal feature integration and semantic diversity, uncovering impactful meta-paths that are often overlooked by traditional approaches. Experimental results demonstrate that CSMPG consistently enhances recommendation quality and significantly outperforms structure-only and predefined-path-based models.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"633 \",\"pages\":\"Article 129780\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225004527\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225004527","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在异构图神经网络(hgnn)中,捕获各种类型实体之间的复杂关系对于实现高级机器学习应用至关重要。异构信息网络(HINs)是由相互连接的多类型节点和边缘组成的,在管理语义多样性和内在异构性方面面临着重大挑战。传统方法依赖于手工设计的元路径,难以动态适应个性化需求,往往忽略了结构和属性特征的集成。为了解决这些限制,本文介绍了跨模态共生元路径生成器(CSMPG)框架。CSMPG集成了两个关键模块:跨模态状态生成模块,将节点结构和属性信息编码为任务感知状态向量;个性化元路径生成模块,使用强化学习动态生成和细化元路径。通过利用下游任务反馈,CSMPG优化路径选择以最大化性能。该框架有效地平衡了跨模态特征集成和语义多样性,揭示了传统方法经常忽略的有影响力的元路径。实验结果表明,CSMPG持续提高推荐质量,显著优于纯结构和基于预定义路径的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-modal feature symbiosis for personalized meta-path generation in heterogeneous networks
In heterogeneous graph neural networks (HGNNs), the capture of intricate relationships among various types of entities is essential to achieve advanced machine learning applications. Heterogeneous Information Networks (HINs), composed of interconnected multi-type nodes and edges, face significant challenges in managing semantic diversity and inherent heterogeneity. Traditional methods, which rely on manually designed meta-paths, struggle to adapt dynamically to personalized needs and often neglect the integration of structural and attribute features. To address these limitations, this paper introduces the Cross-Modal Symbiotic Meta-Path Generator (CSMPG) framework. CSMPG integrates two key modules: a Cross-Modal State Generation Module that encodes node structure and attribute information into task-aware state vectors and a Personalized Meta-Path Generation Module that dynamically generates and refines meta-paths using reinforcement learning. By leveraging downstream task feedback, CSMPG optimizes path selection to maximize performance. The framework effectively balances cross-modal feature integration and semantic diversity, uncovering impactful meta-paths that are often overlooked by traditional approaches. Experimental results demonstrate that CSMPG consistently enhances recommendation quality and significantly outperforms structure-only and predefined-path-based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信