将多发电系统集成到以沼气为燃料的燃气轮机发电厂以减少二氧化碳排放:一种有效的设计和能源经济评估

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lunan Li , Zhimin Wu , Chuan Jin
{"title":"将多发电系统集成到以沼气为燃料的燃气轮机发电厂以减少二氧化碳排放:一种有效的设计和能源经济评估","authors":"Lunan Li ,&nbsp;Zhimin Wu ,&nbsp;Chuan Jin","doi":"10.1016/j.compchemeng.2025.109076","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating renewable sources with existing power plants represents a viable strategy for enhancing feasibility, reducing thermodynamic irreversibility, and lowering air pollution. This study employs a biomass digestion method to produce syngas, which feeds a post-combustion chamber to assist a methane-fueled Brayton cycle. An efficient heat design model is developed using the Engineering Equation Solver (EES), integrating a geothermal-powered trigeneration unit with the upper cycle to produce power, cooling, and potable water. The integrated scheme includes a flash-binary geothermal plant, a separation vessel desalination process, multi-effect desalination, and generator-absorber-heat exchange refrigeration units. Energy, exergy, and economic analyses are conducted to assess the thermodynamic and economic feasibility of the system. A multi-criteria optimization is conducted in two scenarios: power-freshwater and exergy-net present value (NPV), using an integrated Histogram Gradient Boosting Regression (HGBR) and Multi-Objective Particle Swarm Optimization (MOPSO) model. The first scenario showed a 55.37 % increase in net electricity output (2100.28 kW) and a 51.7 % improvement in freshwater generation (36.09 kg/s) compared to the base case. The optimum point revealed an exergy efficiency of 28.36 %, a total NPV of $5.703 M, and a payback period of 4.85 years. In the second scenario, an exergy efficiency of 29.52 %, an NPV of $4.41 M, and a payback period of 5.37 years are achieved. Based on the results, the first scenario demonstrates superior performance.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"197 ","pages":"Article 109076"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating a multigeneration system into a biogas-fueled gas turbine power plant for CO2 emission reduction: An efficient design and exergy-economic assessment\",\"authors\":\"Lunan Li ,&nbsp;Zhimin Wu ,&nbsp;Chuan Jin\",\"doi\":\"10.1016/j.compchemeng.2025.109076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrating renewable sources with existing power plants represents a viable strategy for enhancing feasibility, reducing thermodynamic irreversibility, and lowering air pollution. This study employs a biomass digestion method to produce syngas, which feeds a post-combustion chamber to assist a methane-fueled Brayton cycle. An efficient heat design model is developed using the Engineering Equation Solver (EES), integrating a geothermal-powered trigeneration unit with the upper cycle to produce power, cooling, and potable water. The integrated scheme includes a flash-binary geothermal plant, a separation vessel desalination process, multi-effect desalination, and generator-absorber-heat exchange refrigeration units. Energy, exergy, and economic analyses are conducted to assess the thermodynamic and economic feasibility of the system. A multi-criteria optimization is conducted in two scenarios: power-freshwater and exergy-net present value (NPV), using an integrated Histogram Gradient Boosting Regression (HGBR) and Multi-Objective Particle Swarm Optimization (MOPSO) model. The first scenario showed a 55.37 % increase in net electricity output (2100.28 kW) and a 51.7 % improvement in freshwater generation (36.09 kg/s) compared to the base case. The optimum point revealed an exergy efficiency of 28.36 %, a total NPV of $5.703 M, and a payback period of 4.85 years. In the second scenario, an exergy efficiency of 29.52 %, an NPV of $4.41 M, and a payback period of 5.37 years are achieved. Based on the results, the first scenario demonstrates superior performance.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"197 \",\"pages\":\"Article 109076\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425000808\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000808","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

将可再生能源与现有电厂相结合是提高可行性、减少热力不可逆性和降低空气污染的可行策略。本研究采用生物质消化法生产合成气,供燃烧后燃烧室辅助以甲烷为燃料的布雷顿循环。利用工程方程求解器(EES)建立了一个高效的热设计模型,将地热三联发电机组与上部循环集成在一起,以产生电力、冷却和饮用水。该综合方案包括一个闪速二元地热发电厂、一个分离容器脱盐过程、多效脱盐和发电-吸收-热交换制冷装置。进行能源、火用和经济分析,以评估该系统的热力学和经济可行性。采用直方图梯度增强回归(HGBR)和多目标粒子群优化(MOPSO)模型,对电力-淡水和火用-净现值(NPV)两种情况进行多准则优化。与基本情况相比,第一种方案的净发电量(2100.28千瓦)增加了55.37%,淡水发电量(36.09千克/秒)提高了51.7%。最优点的能源效率为28.36%,净现值为570.3万美元,投资回收期为4.85年。在第二种方案中,能源效率为29.52%,净现值为441万美元,投资回收期为5.37年。根据结果,第一个场景表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating a multigeneration system into a biogas-fueled gas turbine power plant for CO2 emission reduction: An efficient design and exergy-economic assessment
Integrating renewable sources with existing power plants represents a viable strategy for enhancing feasibility, reducing thermodynamic irreversibility, and lowering air pollution. This study employs a biomass digestion method to produce syngas, which feeds a post-combustion chamber to assist a methane-fueled Brayton cycle. An efficient heat design model is developed using the Engineering Equation Solver (EES), integrating a geothermal-powered trigeneration unit with the upper cycle to produce power, cooling, and potable water. The integrated scheme includes a flash-binary geothermal plant, a separation vessel desalination process, multi-effect desalination, and generator-absorber-heat exchange refrigeration units. Energy, exergy, and economic analyses are conducted to assess the thermodynamic and economic feasibility of the system. A multi-criteria optimization is conducted in two scenarios: power-freshwater and exergy-net present value (NPV), using an integrated Histogram Gradient Boosting Regression (HGBR) and Multi-Objective Particle Swarm Optimization (MOPSO) model. The first scenario showed a 55.37 % increase in net electricity output (2100.28 kW) and a 51.7 % improvement in freshwater generation (36.09 kg/s) compared to the base case. The optimum point revealed an exergy efficiency of 28.36 %, a total NPV of $5.703 M, and a payback period of 4.85 years. In the second scenario, an exergy efficiency of 29.52 %, an NPV of $4.41 M, and a payback period of 5.37 years are achieved. Based on the results, the first scenario demonstrates superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信