异构Hopfield神经网络模拟实现

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bocheng Bao, Chunlong Zhou, Han Bao, Bei Chen, Mo Chen
{"title":"异构Hopfield神经网络模拟实现","authors":"Bocheng Bao,&nbsp;Chunlong Zhou,&nbsp;Han Bao,&nbsp;Bei Chen,&nbsp;Mo Chen","doi":"10.1016/j.chaos.2025.116234","DOIUrl":null,"url":null,"abstract":"<div><div>The activation function plays a crucial role as a nonlinear factor in the Hopfield neural network. However, limited attention has been given to studying heterogeneous activation functions. In this study, we present a three-neuron heterogeneous Hopfield neural network incorporating two distinct activation functions, namely hyperbolic tangent function and sine function. The kinetics of the heterogeneous neural network is investigated theoretically and numerically, and the kinetic effect of the sine activation function is revealed thereby. The findings demonstrate the presence of intricate kinetics, including chaos, period, stable point, and coexisting attractors, and the enlargement of chaotic kinetics distribution on the parameter plane by sine activation function within the heterogeneous neural network. Notably, an analog circuit is designed on a hardware level to simplify the implementation of the heterogeneous Hopfield neural network and experimental measurements provide strong validation for the numerical findings.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116234"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Hopfield neural network with analog implementation\",\"authors\":\"Bocheng Bao,&nbsp;Chunlong Zhou,&nbsp;Han Bao,&nbsp;Bei Chen,&nbsp;Mo Chen\",\"doi\":\"10.1016/j.chaos.2025.116234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The activation function plays a crucial role as a nonlinear factor in the Hopfield neural network. However, limited attention has been given to studying heterogeneous activation functions. In this study, we present a three-neuron heterogeneous Hopfield neural network incorporating two distinct activation functions, namely hyperbolic tangent function and sine function. The kinetics of the heterogeneous neural network is investigated theoretically and numerically, and the kinetic effect of the sine activation function is revealed thereby. The findings demonstrate the presence of intricate kinetics, including chaos, period, stable point, and coexisting attractors, and the enlargement of chaotic kinetics distribution on the parameter plane by sine activation function within the heterogeneous neural network. Notably, an analog circuit is designed on a hardware level to simplify the implementation of the heterogeneous Hopfield neural network and experimental measurements provide strong validation for the numerical findings.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"194 \",\"pages\":\"Article 116234\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925002474\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002474","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在Hopfield神经网络中,激活函数作为非线性因子起着至关重要的作用。然而,对非均相激活函数的研究却很少。在这项研究中,我们提出了一个三神经元异质Hopfield神经网络,它包含两个不同的激活函数,即双曲正切函数和正弦函数。从理论上和数值上研究了非均质神经网络的动力学,揭示了正弦激活函数的动力学效应。结果表明,在非均质神经网络中存在混沌、周期、稳定点和吸引子共存的复杂动力学,并通过正弦激活函数扩大了混沌动力学在参数平面上的分布。值得注意的是,在硬件层面设计了一个模拟电路,以简化异构Hopfield神经网络的实现,实验测量为数值结果提供了强有力的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Hopfield neural network with analog implementation
The activation function plays a crucial role as a nonlinear factor in the Hopfield neural network. However, limited attention has been given to studying heterogeneous activation functions. In this study, we present a three-neuron heterogeneous Hopfield neural network incorporating two distinct activation functions, namely hyperbolic tangent function and sine function. The kinetics of the heterogeneous neural network is investigated theoretically and numerically, and the kinetic effect of the sine activation function is revealed thereby. The findings demonstrate the presence of intricate kinetics, including chaos, period, stable point, and coexisting attractors, and the enlargement of chaotic kinetics distribution on the parameter plane by sine activation function within the heterogeneous neural network. Notably, an analog circuit is designed on a hardware level to simplify the implementation of the heterogeneous Hopfield neural network and experimental measurements provide strong validation for the numerical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信