揭示 MC3T3-E1 细胞成骨细胞分化的动态过程:从转录组深入了解基质矿化和细胞增殖

IF 3.5 2区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Bone Pub Date : 2025-03-01 DOI:10.1016/j.bone.2025.117442
Heein Yoon , Seung Gwa Park , Hye-Rim Shin , Ki-Tae Kim , Young-Dan Cho , Jae-I Moon , Woo-Jin Kim , Hyun-Mo Ryoo
{"title":"揭示 MC3T3-E1 细胞成骨细胞分化的动态过程:从转录组深入了解基质矿化和细胞增殖","authors":"Heein Yoon ,&nbsp;Seung Gwa Park ,&nbsp;Hye-Rim Shin ,&nbsp;Ki-Tae Kim ,&nbsp;Young-Dan Cho ,&nbsp;Jae-I Moon ,&nbsp;Woo-Jin Kim ,&nbsp;Hyun-Mo Ryoo","doi":"10.1016/j.bone.2025.117442","DOIUrl":null,"url":null,"abstract":"<div><div>Unraveling the intricacies of osteoblast differentiation is crucial for advancing our comprehension of bone biology. This study investigated the complicated molecular events orchestrating osteoblast differentiation in MC3T3-E1 cells, a well-established in vitro culture model. Employing longitudinal RNA-sequencing analysis, we explored transcriptomic changes at the pivotal time points of 0, 1, 4, 7, 10, 14, and 21 days and categorized osteogenic differentiation into proliferation, matrix maturation, and mineralization stages. Notably, we observed a simultaneous increase in matrix mineralization and cell proliferation during the mineralization stage, accompanied by a positive correlation between proliferation-associated genes and those enriched in ossification. Additionally, we identified the presence of proliferating cells over the mineralizing matrix layers. These results could serve as a model for understanding the principles by which bone lining cells are formed on the calcified bone matrix and the mechanism by which new osteoblasts are recruited during the bone remodeling process.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"194 ","pages":"Article 117442"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the dynamics of osteoblast differentiation in MC3T3-E1 cells: Transcriptomic insights into matrix mineralization and cell proliferation\",\"authors\":\"Heein Yoon ,&nbsp;Seung Gwa Park ,&nbsp;Hye-Rim Shin ,&nbsp;Ki-Tae Kim ,&nbsp;Young-Dan Cho ,&nbsp;Jae-I Moon ,&nbsp;Woo-Jin Kim ,&nbsp;Hyun-Mo Ryoo\",\"doi\":\"10.1016/j.bone.2025.117442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unraveling the intricacies of osteoblast differentiation is crucial for advancing our comprehension of bone biology. This study investigated the complicated molecular events orchestrating osteoblast differentiation in MC3T3-E1 cells, a well-established in vitro culture model. Employing longitudinal RNA-sequencing analysis, we explored transcriptomic changes at the pivotal time points of 0, 1, 4, 7, 10, 14, and 21 days and categorized osteogenic differentiation into proliferation, matrix maturation, and mineralization stages. Notably, we observed a simultaneous increase in matrix mineralization and cell proliferation during the mineralization stage, accompanied by a positive correlation between proliferation-associated genes and those enriched in ossification. Additionally, we identified the presence of proliferating cells over the mineralizing matrix layers. These results could serve as a model for understanding the principles by which bone lining cells are formed on the calcified bone matrix and the mechanism by which new osteoblasts are recruited during the bone remodeling process.</div></div>\",\"PeriodicalId\":9301,\"journal\":{\"name\":\"Bone\",\"volume\":\"194 \",\"pages\":\"Article 117442\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S8756328225000547\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328225000547","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the dynamics of osteoblast differentiation in MC3T3-E1 cells: Transcriptomic insights into matrix mineralization and cell proliferation
Unraveling the intricacies of osteoblast differentiation is crucial for advancing our comprehension of bone biology. This study investigated the complicated molecular events orchestrating osteoblast differentiation in MC3T3-E1 cells, a well-established in vitro culture model. Employing longitudinal RNA-sequencing analysis, we explored transcriptomic changes at the pivotal time points of 0, 1, 4, 7, 10, 14, and 21 days and categorized osteogenic differentiation into proliferation, matrix maturation, and mineralization stages. Notably, we observed a simultaneous increase in matrix mineralization and cell proliferation during the mineralization stage, accompanied by a positive correlation between proliferation-associated genes and those enriched in ossification. Additionally, we identified the presence of proliferating cells over the mineralizing matrix layers. These results could serve as a model for understanding the principles by which bone lining cells are formed on the calcified bone matrix and the mechanism by which new osteoblasts are recruited during the bone remodeling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone
Bone 医学-内分泌学与代谢
CiteScore
8.90
自引率
4.90%
发文量
264
审稿时长
30 days
期刊介绍: BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信