Hiroki Degaki, Ikuo Taniguchi, Shigeru Deguchi, Tsuyoshi Koga
{"title":"Quantitative Insights into Pressure-Responsive Phase Behavior in Diblock Copolymers","authors":"Hiroki Degaki, Ikuo Taniguchi, Shigeru Deguchi, Tsuyoshi Koga","doi":"10.1021/acs.macromol.4c02253","DOIUrl":null,"url":null,"abstract":"The pressure-responsive phase behavior of block copolymers, which is crucial for energy-efficient processing of certain polymeric materials, is systematically studied using a compressible self-consistent field theory based on a simple lattice vacancy model. To date, predictions of the phase behavior have been based mainly on qualitative assessments. In this study, we quantitatively show that large differences in the self-interaction energy between blocks lead to disordering with increasing pressure, while small differences lead to ordering. We discuss the molecular mechanisms underlying the phase behavior with a focus on voids, which account for the compressibility. The results from our theory agrees with the effective Flory–Huggins interaction parameter calculated by the compressible random phase approximation theory. Additionally, extending the theory to multicomponent systems, we investigate the effect of gas absorption on phase behavior, focusing on the balance of interaction parameters. Our results predict that gas absorption enhances pressure-induced ordering.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"34 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02253","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Quantitative Insights into Pressure-Responsive Phase Behavior in Diblock Copolymers
The pressure-responsive phase behavior of block copolymers, which is crucial for energy-efficient processing of certain polymeric materials, is systematically studied using a compressible self-consistent field theory based on a simple lattice vacancy model. To date, predictions of the phase behavior have been based mainly on qualitative assessments. In this study, we quantitatively show that large differences in the self-interaction energy between blocks lead to disordering with increasing pressure, while small differences lead to ordering. We discuss the molecular mechanisms underlying the phase behavior with a focus on voids, which account for the compressibility. The results from our theory agrees with the effective Flory–Huggins interaction parameter calculated by the compressible random phase approximation theory. Additionally, extending the theory to multicomponent systems, we investigate the effect of gas absorption on phase behavior, focusing on the balance of interaction parameters. Our results predict that gas absorption enhances pressure-induced ordering.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.