Sigitas Kilikevičius , Leon Mishnaevsky Jr. , Daiva Zeleniakiene
{"title":"Layered double hydroxides reinforced epoxy composites: Computational analysis of microstructure effect on strength","authors":"Sigitas Kilikevičius , Leon Mishnaevsky Jr. , Daiva Zeleniakiene","doi":"10.1016/j.commatsci.2025.113816","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyses the mechanical and damage behaviour of epoxy composites incorporating magnesium–aluminium layered double hydroxides (LDH), which have potential applications as corrosion protective coatings. The analysis of these composites was carried out by developing a computational model based on numerical homogenisation approach, employing the micromechanical finite element method. The influence of the elastic modulus, aspect ratio and weight fractions of the LDH particles on the mechanical and damage behaviour of epoxy/LDH composites was investigated. Damage modelling was performed, capturing both crack formation and evolution. Damage mechanisms such as crack pinning and crack deflection due to the LDH particles were observed. The modelling demonstrated that with an increase in the weight fraction of LDH, the composite became stiffer and more brittle. Adding up to 5 wt% LDH particles to epoxy increased the elastic modulus of the composite by nearly 20%. The strain at break was reduced to 2 %. The model was validated against experimental data, demonstrating its ability to predict the behaviour of epoxy/LDH composites. The findings indicate that epoxy/LDH composites exhibit enhanced stiffness, making them suitable for practical applications as corrosion-protective coatings.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"252 ","pages":"Article 113816"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625001594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Layered double hydroxides reinforced epoxy composites: Computational analysis of microstructure effect on strength
This paper analyses the mechanical and damage behaviour of epoxy composites incorporating magnesium–aluminium layered double hydroxides (LDH), which have potential applications as corrosion protective coatings. The analysis of these composites was carried out by developing a computational model based on numerical homogenisation approach, employing the micromechanical finite element method. The influence of the elastic modulus, aspect ratio and weight fractions of the LDH particles on the mechanical and damage behaviour of epoxy/LDH composites was investigated. Damage modelling was performed, capturing both crack formation and evolution. Damage mechanisms such as crack pinning and crack deflection due to the LDH particles were observed. The modelling demonstrated that with an increase in the weight fraction of LDH, the composite became stiffer and more brittle. Adding up to 5 wt% LDH particles to epoxy increased the elastic modulus of the composite by nearly 20%. The strain at break was reduced to 2 %. The model was validated against experimental data, demonstrating its ability to predict the behaviour of epoxy/LDH composites. The findings indicate that epoxy/LDH composites exhibit enhanced stiffness, making them suitable for practical applications as corrosion-protective coatings.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.