纳秒激光切割碳化硅形成的激光影响区和烧蚀碎片的完整相位分布图

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Mehdi Rouhani , Sai Bhavani Sravan Metla , Jonathan Hobley , Dileep Karnam , Chia-Hung Hung , Yu-Lung Lo , Yeau-Ren Jeng
{"title":"纳秒激光切割碳化硅形成的激光影响区和烧蚀碎片的完整相位分布图","authors":"Mehdi Rouhani ,&nbsp;Sai Bhavani Sravan Metla ,&nbsp;Jonathan Hobley ,&nbsp;Dileep Karnam ,&nbsp;Chia-Hung Hung ,&nbsp;Yu-Lung Lo ,&nbsp;Yeau-Ren Jeng","doi":"10.1016/j.jmatprotec.2025.118782","DOIUrl":null,"url":null,"abstract":"<div><div>Laser cutting of silicon carbide (SiC) poses significant challenges due to its extreme hardness and thermal resistance, necessitating high energy input and often leading to extensive melt-zone formation and collateral damage. This study optimizes nanosecond laser cutting of SiC by systematically investigating phase transformations, melt-zone formation, and debris deposition, offering a cost-effective alternative to femtosecond laser systems. Using Raman spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy, we construct a comprehensive phase distribution map of the laser-affected region, revealing key material transformations. Our results demonstrate that material removal is confined to a narrow central fissure. Meanwhile, the surrounding melt zone consists of phase-separated amorphous silicon (a-Si) and amorphous carbon (a-C). Lateral crevasses mark the interface between the melt zone and the unmodified SiC substrate. We further explore the influence of atmospheric conditions (oxygen, air, and argon) and laser pulse parameters (pulse width and repetition rate) on melt-zone formation and cutting efficiency. Oxygen-rich environments expand the melt zone and yield oxygen-rich debris, while inert atmospheres suppress oxidation, forming carbon-rich debris with less material loss. Shorter pulse widths enhance material removal while reducing melt-zone expansion, supporting a mechanistic framework in which sequential multiphoton absorption drives ablation while photothermal effects govern melt-zone formation. This study provides critical insights into optimizing nanosecond laser cutting of SiC, offering practical strategies for achieving high-precision cuts with less thermal damage and material waste. These findings contribute to advancing industrial laser machining of SiC, making high-precision, low-cost processing more accessible and efficient.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118782"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complete phase distribution map of the laser affected zone and ablation debris formed by nanosecond laser-cutting of SiC\",\"authors\":\"Mehdi Rouhani ,&nbsp;Sai Bhavani Sravan Metla ,&nbsp;Jonathan Hobley ,&nbsp;Dileep Karnam ,&nbsp;Chia-Hung Hung ,&nbsp;Yu-Lung Lo ,&nbsp;Yeau-Ren Jeng\",\"doi\":\"10.1016/j.jmatprotec.2025.118782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser cutting of silicon carbide (SiC) poses significant challenges due to its extreme hardness and thermal resistance, necessitating high energy input and often leading to extensive melt-zone formation and collateral damage. This study optimizes nanosecond laser cutting of SiC by systematically investigating phase transformations, melt-zone formation, and debris deposition, offering a cost-effective alternative to femtosecond laser systems. Using Raman spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy, we construct a comprehensive phase distribution map of the laser-affected region, revealing key material transformations. Our results demonstrate that material removal is confined to a narrow central fissure. Meanwhile, the surrounding melt zone consists of phase-separated amorphous silicon (a-Si) and amorphous carbon (a-C). Lateral crevasses mark the interface between the melt zone and the unmodified SiC substrate. We further explore the influence of atmospheric conditions (oxygen, air, and argon) and laser pulse parameters (pulse width and repetition rate) on melt-zone formation and cutting efficiency. Oxygen-rich environments expand the melt zone and yield oxygen-rich debris, while inert atmospheres suppress oxidation, forming carbon-rich debris with less material loss. Shorter pulse widths enhance material removal while reducing melt-zone expansion, supporting a mechanistic framework in which sequential multiphoton absorption drives ablation while photothermal effects govern melt-zone formation. This study provides critical insights into optimizing nanosecond laser cutting of SiC, offering practical strategies for achieving high-precision cuts with less thermal damage and material waste. These findings contribute to advancing industrial laser machining of SiC, making high-precision, low-cost processing more accessible and efficient.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"338 \",\"pages\":\"Article 118782\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092401362500072X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092401362500072X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

由于碳化硅(SiC)具有极高的硬度和耐热性,需要高能量输入,并且经常导致广泛的熔化区形成和附带损伤,因此激光切割碳化硅(SiC)面临着重大挑战。本研究通过系统地研究相变、熔化区形成和碎屑沉积,优化了纳秒激光切割SiC,为飞秒激光系统提供了一种经济有效的替代方案。利用拉曼光谱、光致发光和x射线光电子能谱,我们构建了激光影响区域的综合相位分布图,揭示了关键的材料转变。我们的结果表明,材料的去除仅限于一个狭窄的中心裂缝。同时,熔体周围由相分离的非晶硅(a-Si)和非晶碳(a-C)组成。横向裂缝标志着熔体与未改性碳化硅衬底之间的界面。我们进一步探讨了大气条件(氧气、空气和氩气)和激光脉冲参数(脉冲宽度和重复频率)对熔区形成和切割效率的影响。富氧环境扩大熔体区域,产生富氧碎屑,而惰性气氛抑制氧化,形成富碳碎屑,减少物质损失。较短的脉冲宽度增强了材料的去除,同时减少了熔区的膨胀,支持了一个机制框架,其中顺序多光子吸收驱动烧蚀,而光热效应控制熔区的形成。该研究为优化纳秒激光切割SiC提供了重要见解,为实现高精度切割提供了实用策略,同时减少了热损伤和材料浪费。这些发现有助于推进SiC的工业激光加工,使高精度、低成本的加工更容易实现和高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A complete phase distribution map of the laser affected zone and ablation debris formed by nanosecond laser-cutting of SiC
Laser cutting of silicon carbide (SiC) poses significant challenges due to its extreme hardness and thermal resistance, necessitating high energy input and often leading to extensive melt-zone formation and collateral damage. This study optimizes nanosecond laser cutting of SiC by systematically investigating phase transformations, melt-zone formation, and debris deposition, offering a cost-effective alternative to femtosecond laser systems. Using Raman spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy, we construct a comprehensive phase distribution map of the laser-affected region, revealing key material transformations. Our results demonstrate that material removal is confined to a narrow central fissure. Meanwhile, the surrounding melt zone consists of phase-separated amorphous silicon (a-Si) and amorphous carbon (a-C). Lateral crevasses mark the interface between the melt zone and the unmodified SiC substrate. We further explore the influence of atmospheric conditions (oxygen, air, and argon) and laser pulse parameters (pulse width and repetition rate) on melt-zone formation and cutting efficiency. Oxygen-rich environments expand the melt zone and yield oxygen-rich debris, while inert atmospheres suppress oxidation, forming carbon-rich debris with less material loss. Shorter pulse widths enhance material removal while reducing melt-zone expansion, supporting a mechanistic framework in which sequential multiphoton absorption drives ablation while photothermal effects govern melt-zone formation. This study provides critical insights into optimizing nanosecond laser cutting of SiC, offering practical strategies for achieving high-precision cuts with less thermal damage and material waste. These findings contribute to advancing industrial laser machining of SiC, making high-precision, low-cost processing more accessible and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信