基于地球统计和机器学习耦合过程的创新地球物理锥体阻力和滑套摩擦预测

A. Bolève, R. Eddies, M. Staring, Y. Benboudiaf, H. Pournaki, M. Nepveaux
{"title":"基于地球统计和机器学习耦合过程的创新地球物理锥体阻力和滑套摩擦预测","authors":"A. Bolève,&nbsp;R. Eddies,&nbsp;M. Staring,&nbsp;Y. Benboudiaf,&nbsp;H. Pournaki,&nbsp;M. Nepveaux","doi":"10.1016/j.aiig.2025.100110","DOIUrl":null,"url":null,"abstract":"<div><div>Geotechnical parameters derived from an intrusive cone penetration test (CPT) are used to asses mechanical properties to inform the design phase of infrastructure projects. However, local, in situ 1D measurements can fail to capture 3D subsurface variations, which could mean less than optimal design decisions for foundation engineering. By coupling the localised measurements from CPTs with more global 3D measurements derived from geophysical methods, a higher fidelity 3D overview of the subsurface can be obtained. Machine Learning (ML) may offer an effective means to capture all types of geophysical information associated with CPT data at a site scale to build a 2D or 3D ground model. In this paper, we present an ML approach to build a 3D ground model of cone resistance and sleeve friction by combining several CPT measurements with Multichannel Analysis of Surface Waves (MASW) and Electrical Resistivity Tomography (ERT) data on a land site characterisation project in the United Arab Emirates (UAE). To avoid a potential overfitting problem inherent to the use of machine learning and a lack of data at certain locations, we explore the possibility of using a prior Geo-Statistical (GS) approach that attempts to constrain the overfitting process by “artificially” increasing the amount of input data. A sensitivity study is also performed on input features used to train the ML algorithm to better define the optimal combination of input features for the prediction. Our results showed that ERT data were not useful in capturing 3D variations of geotechnical properties compared to V<sub>s</sub> due to the geographical location of the site (200 m east from the Oman Gulf) and the possible effect of saline water intrusion. Additionally, we demonstrate that the use of a prior GS phase could be a promising and interesting means to make the prediction of ground properties more robust, especially for this specific case study described in this paper. Looking ahead, better representation of the subsurface can lead to a number of benefits for stakeholders involved in developing assets. Better ground/geotechnical models mean better site calibration of design methods and fewer design assumptions for reliability-based design, creating an opportunity for value engineering in the form of lighter construction without compromising safety, shorter construction timelines, and reduced resource requirements.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative cone resistance and sleeve friction prediction from geophysics based on a coupled geo-statistical and machine learning process\",\"authors\":\"A. Bolève,&nbsp;R. Eddies,&nbsp;M. Staring,&nbsp;Y. Benboudiaf,&nbsp;H. Pournaki,&nbsp;M. Nepveaux\",\"doi\":\"10.1016/j.aiig.2025.100110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Geotechnical parameters derived from an intrusive cone penetration test (CPT) are used to asses mechanical properties to inform the design phase of infrastructure projects. However, local, in situ 1D measurements can fail to capture 3D subsurface variations, which could mean less than optimal design decisions for foundation engineering. By coupling the localised measurements from CPTs with more global 3D measurements derived from geophysical methods, a higher fidelity 3D overview of the subsurface can be obtained. Machine Learning (ML) may offer an effective means to capture all types of geophysical information associated with CPT data at a site scale to build a 2D or 3D ground model. In this paper, we present an ML approach to build a 3D ground model of cone resistance and sleeve friction by combining several CPT measurements with Multichannel Analysis of Surface Waves (MASW) and Electrical Resistivity Tomography (ERT) data on a land site characterisation project in the United Arab Emirates (UAE). To avoid a potential overfitting problem inherent to the use of machine learning and a lack of data at certain locations, we explore the possibility of using a prior Geo-Statistical (GS) approach that attempts to constrain the overfitting process by “artificially” increasing the amount of input data. A sensitivity study is also performed on input features used to train the ML algorithm to better define the optimal combination of input features for the prediction. Our results showed that ERT data were not useful in capturing 3D variations of geotechnical properties compared to V<sub>s</sub> due to the geographical location of the site (200 m east from the Oman Gulf) and the possible effect of saline water intrusion. Additionally, we demonstrate that the use of a prior GS phase could be a promising and interesting means to make the prediction of ground properties more robust, especially for this specific case study described in this paper. Looking ahead, better representation of the subsurface can lead to a number of benefits for stakeholders involved in developing assets. Better ground/geotechnical models mean better site calibration of design methods and fewer design assumptions for reliability-based design, creating an opportunity for value engineering in the form of lighter construction without compromising safety, shorter construction timelines, and reduced resource requirements.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 1\",\"pages\":\"Article 100110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544125000061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从侵入式锥体穿透测试(CPT)中获得的岩土参数用于评估机械性能,为基础设施项目的设计阶段提供信息。然而,局部的原位1D测量可能无法捕获三维地下变化,这可能意味着基础工程的最佳设计决策不足。通过将来自cpt的局部测量与来自地球物理方法的更多全局3D测量相结合,可以获得更高保真度的地下3D概况。机器学习(ML)可以提供一种有效的方法,在现场尺度上捕获与CPT数据相关的所有类型的地球物理信息,以建立2D或3D地面模型。在本文中,我们提出了一种ML方法,通过将多个CPT测量结果与多通道表面波分析(MASW)和电阻率层析成像(ERT)数据相结合,在阿拉伯联合酋长国(UAE)的一个地块特征描述项目中建立锥体阻力和套筒摩擦的三维地面模型。为了避免使用机器学习和某些位置缺乏数据所固有的潜在过拟合问题,我们探索了使用先前地理统计学(GS)方法的可能性,该方法试图通过“人为”增加输入数据量来限制过拟合过程。对用于训练ML算法的输入特征进行敏感性研究,以更好地定义用于预测的输入特征的最佳组合。我们的研究结果表明,由于场地的地理位置(距阿曼湾以东200米)和盐水入侵的可能影响,与v相比,ERT数据在捕获岩土力学特性的三维变化方面并不有用。此外,我们证明,使用先前的GS相位可能是一种有前途和有趣的方法,可以使地面性质的预测更加可靠,特别是对于本文中描述的具体案例研究。展望未来,更好地代表地下资源可以为参与开发资产的利益相关者带来许多好处。更好的地面/岩土模型意味着更好的现场校准设计方法和更少的基于可靠性设计的设计假设,以更轻的结构形式创造价值工程的机会,而不影响安全,更短的施工时间,减少资源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative cone resistance and sleeve friction prediction from geophysics based on a coupled geo-statistical and machine learning process
Geotechnical parameters derived from an intrusive cone penetration test (CPT) are used to asses mechanical properties to inform the design phase of infrastructure projects. However, local, in situ 1D measurements can fail to capture 3D subsurface variations, which could mean less than optimal design decisions for foundation engineering. By coupling the localised measurements from CPTs with more global 3D measurements derived from geophysical methods, a higher fidelity 3D overview of the subsurface can be obtained. Machine Learning (ML) may offer an effective means to capture all types of geophysical information associated with CPT data at a site scale to build a 2D or 3D ground model. In this paper, we present an ML approach to build a 3D ground model of cone resistance and sleeve friction by combining several CPT measurements with Multichannel Analysis of Surface Waves (MASW) and Electrical Resistivity Tomography (ERT) data on a land site characterisation project in the United Arab Emirates (UAE). To avoid a potential overfitting problem inherent to the use of machine learning and a lack of data at certain locations, we explore the possibility of using a prior Geo-Statistical (GS) approach that attempts to constrain the overfitting process by “artificially” increasing the amount of input data. A sensitivity study is also performed on input features used to train the ML algorithm to better define the optimal combination of input features for the prediction. Our results showed that ERT data were not useful in capturing 3D variations of geotechnical properties compared to Vs due to the geographical location of the site (200 m east from the Oman Gulf) and the possible effect of saline water intrusion. Additionally, we demonstrate that the use of a prior GS phase could be a promising and interesting means to make the prediction of ground properties more robust, especially for this specific case study described in this paper. Looking ahead, better representation of the subsurface can lead to a number of benefits for stakeholders involved in developing assets. Better ground/geotechnical models mean better site calibration of design methods and fewer design assumptions for reliability-based design, creating an opportunity for value engineering in the form of lighter construction without compromising safety, shorter construction timelines, and reduced resource requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信