{"title":"条件谱法","authors":"Federico M. Bandi , Yinan Su","doi":"10.1016/j.jeconom.2024.105863","DOIUrl":null,"url":null,"abstract":"<div><div>We model predictive scale-specific cycles. By employing suitable matrix representations, we express the forecast errors of covariance-stationary multivariate time series in terms of conditionally orthonormal scale-specific bases. The representations yield conditionally orthogonal decompositions of these forecast errors. They also provide decompositions of their variances and betas in terms of scale-specific variances and betas capturing predictive variability and co-variability over cycles of alternative lengths without spillovers across cycles. Making use of the proposed representations within the classical family of time-varying conditional volatility models, we document the role of time-varying volatility forecasts in generating orthogonal predictive scale-specific cycles in returns. We conclude by providing suggestive evidence that the conditional variances of the predictive return cycles (<span><math><mi>i</mi></math></span>) may be priced over short-to-medium horizons and (<span><math><mrow><mi>i</mi><mi>i</mi></mrow></math></span>) may offer economically-relevant trading signals over these same horizons.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"248 ","pages":"Article 105863"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional spectral methods\",\"authors\":\"Federico M. Bandi , Yinan Su\",\"doi\":\"10.1016/j.jeconom.2024.105863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We model predictive scale-specific cycles. By employing suitable matrix representations, we express the forecast errors of covariance-stationary multivariate time series in terms of conditionally orthonormal scale-specific bases. The representations yield conditionally orthogonal decompositions of these forecast errors. They also provide decompositions of their variances and betas in terms of scale-specific variances and betas capturing predictive variability and co-variability over cycles of alternative lengths without spillovers across cycles. Making use of the proposed representations within the classical family of time-varying conditional volatility models, we document the role of time-varying volatility forecasts in generating orthogonal predictive scale-specific cycles in returns. We conclude by providing suggestive evidence that the conditional variances of the predictive return cycles (<span><math><mi>i</mi></math></span>) may be priced over short-to-medium horizons and (<span><math><mrow><mi>i</mi><mi>i</mi></mrow></math></span>) may offer economically-relevant trading signals over these same horizons.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"248 \",\"pages\":\"Article 105863\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002082\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002082","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
We model predictive scale-specific cycles. By employing suitable matrix representations, we express the forecast errors of covariance-stationary multivariate time series in terms of conditionally orthonormal scale-specific bases. The representations yield conditionally orthogonal decompositions of these forecast errors. They also provide decompositions of their variances and betas in terms of scale-specific variances and betas capturing predictive variability and co-variability over cycles of alternative lengths without spillovers across cycles. Making use of the proposed representations within the classical family of time-varying conditional volatility models, we document the role of time-varying volatility forecasts in generating orthogonal predictive scale-specific cycles in returns. We conclude by providing suggestive evidence that the conditional variances of the predictive return cycles () may be priced over short-to-medium horizons and () may offer economically-relevant trading signals over these same horizons.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.