离散选择模型中的弱辨识

IF 9.9 3区 经济学 Q1 ECONOMICS
David T. Frazier , Eric Renault , Lina Zhang , Xueyan Zhao
{"title":"离散选择模型中的弱辨识","authors":"David T. Frazier ,&nbsp;Eric Renault ,&nbsp;Lina Zhang ,&nbsp;Xueyan Zhao","doi":"10.1016/j.jeconom.2024.105866","DOIUrl":null,"url":null,"abstract":"<div><div>We study the impact of weak identification in discrete choice models, and provide insights into the determinants of identification strength in these models. Using these insights, we propose a novel test that can consistently detect weak identification in commonly applied discrete choice models, such as probit, logit, and many of their extensions. Furthermore, we demonstrate that when the null hypothesis of weak identification is rejected, Wald-based inference can be carried out using standard formulas and critical values. A Monte Carlo study compares our proposed testing approach against commonly applied weak identification tests. The results simultaneously demonstrate the good performance of our approach and the fundamental failure of using conventional weak identification tests for linear models in the discrete choice model context. Lastly, we apply our approach in two empirical examples: married women labor force participation, and US food aid and civil conflicts.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"248 ","pages":"Article 105866"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak identification in discrete choice models\",\"authors\":\"David T. Frazier ,&nbsp;Eric Renault ,&nbsp;Lina Zhang ,&nbsp;Xueyan Zhao\",\"doi\":\"10.1016/j.jeconom.2024.105866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the impact of weak identification in discrete choice models, and provide insights into the determinants of identification strength in these models. Using these insights, we propose a novel test that can consistently detect weak identification in commonly applied discrete choice models, such as probit, logit, and many of their extensions. Furthermore, we demonstrate that when the null hypothesis of weak identification is rejected, Wald-based inference can be carried out using standard formulas and critical values. A Monte Carlo study compares our proposed testing approach against commonly applied weak identification tests. The results simultaneously demonstrate the good performance of our approach and the fundamental failure of using conventional weak identification tests for linear models in the discrete choice model context. Lastly, we apply our approach in two empirical examples: married women labor force participation, and US food aid and civil conflicts.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"248 \",\"pages\":\"Article 105866\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002112\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002112","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了离散选择模型中弱识别的影响,并提供了这些模型中识别强度的决定因素的见解。利用这些见解,我们提出了一种新的测试,可以一致地检测通常应用的离散选择模型中的弱识别,例如probit, logit及其许多扩展。此外,我们证明了当弱识别的零假设被拒绝时,可以使用标准公式和临界值进行基于wald的推理。蒙特卡罗研究将我们提出的测试方法与常用的弱识别测试进行了比较。结果同时证明了我们的方法的良好性能,以及在离散选择模型上下文中使用传统的线性模型弱识别测试的根本失败。最后,我们将我们的方法应用于两个实证例子:已婚妇女的劳动力参与,以及美国的粮食援助和国内冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak identification in discrete choice models
We study the impact of weak identification in discrete choice models, and provide insights into the determinants of identification strength in these models. Using these insights, we propose a novel test that can consistently detect weak identification in commonly applied discrete choice models, such as probit, logit, and many of their extensions. Furthermore, we demonstrate that when the null hypothesis of weak identification is rejected, Wald-based inference can be carried out using standard formulas and critical values. A Monte Carlo study compares our proposed testing approach against commonly applied weak identification tests. The results simultaneously demonstrate the good performance of our approach and the fundamental failure of using conventional weak identification tests for linear models in the discrete choice model context. Lastly, we apply our approach in two empirical examples: married women labor force participation, and US food aid and civil conflicts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信