利用姿态感知扩散模型进行虚拟试穿

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Taenam Park, Seoung Bum Kim
{"title":"利用姿态感知扩散模型进行虚拟试穿","authors":"Taenam Park,&nbsp;Seoung Bum Kim","doi":"10.1016/j.jvcir.2025.104424","DOIUrl":null,"url":null,"abstract":"<div><div>Image-based virtual try-on (VTON) refers to the task of synthesizing realistic images of a person wearing a target garment based on reference images. Existing approaches use diffusion models that demonstrate outstanding performance in image synthesis tasks but often fail in preserving the pose and body features of the reference person in certain cases. To address these limitations, we propose Pose-Aware Virtual Try-ON (PA-VTON), a methodology that uses a pretrained diffusion-based VTON framework and additional modules that specify in preserving the information of a person’s attributes. Our proposed module, PoseNet, adds spatial conditioning controls to the VTON process to enhance pose consistency preservation. Experimental results on two benchmark datasets demonstrate that our proposed method quantitatively improves image synthesis performance while qualitatively resolving issues such as ghosting effects and improper generation of body parts that previous methods struggled with.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"108 ","pages":"Article 104424"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual try-on with Pose-Aware diffusion models\",\"authors\":\"Taenam Park,&nbsp;Seoung Bum Kim\",\"doi\":\"10.1016/j.jvcir.2025.104424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Image-based virtual try-on (VTON) refers to the task of synthesizing realistic images of a person wearing a target garment based on reference images. Existing approaches use diffusion models that demonstrate outstanding performance in image synthesis tasks but often fail in preserving the pose and body features of the reference person in certain cases. To address these limitations, we propose Pose-Aware Virtual Try-ON (PA-VTON), a methodology that uses a pretrained diffusion-based VTON framework and additional modules that specify in preserving the information of a person’s attributes. Our proposed module, PoseNet, adds spatial conditioning controls to the VTON process to enhance pose consistency preservation. Experimental results on two benchmark datasets demonstrate that our proposed method quantitatively improves image synthesis performance while qualitatively resolving issues such as ghosting effects and improper generation of body parts that previous methods struggled with.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"108 \",\"pages\":\"Article 104424\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320325000380\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000380","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual try-on with Pose-Aware diffusion models
Image-based virtual try-on (VTON) refers to the task of synthesizing realistic images of a person wearing a target garment based on reference images. Existing approaches use diffusion models that demonstrate outstanding performance in image synthesis tasks but often fail in preserving the pose and body features of the reference person in certain cases. To address these limitations, we propose Pose-Aware Virtual Try-ON (PA-VTON), a methodology that uses a pretrained diffusion-based VTON framework and additional modules that specify in preserving the information of a person’s attributes. Our proposed module, PoseNet, adds spatial conditioning controls to the VTON process to enhance pose consistency preservation. Experimental results on two benchmark datasets demonstrate that our proposed method quantitatively improves image synthesis performance while qualitatively resolving issues such as ghosting effects and improper generation of body parts that previous methods struggled with.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信