{"title":"Influence of Topological Segment Length on the Mechanical Properties of Semicrystalline Polyethylene: A Bias-Controlled Monte Carlo Approach","authors":"Jianlan Ye, Minghao Liu, Jing Hu, Jay Oswald","doi":"10.1021/acs.macromol.4c02643","DOIUrl":null,"url":null,"abstract":"We integrate a biasing mechanism into the hybrid Monte Carlo method that enables the generation of semicrystalline systems with controllable topological segment length. Analysis of the generated systems revealed an entropy-driven relationship between the bridge length and the number of bridges formed. We find that bridges significantly enhance postyield hardening, and the bridge-induced hardening can be divided into four stages: relaxed, activation, engaged, and softening. The results show that lengths of bridges govern the engagement strain and thereby the onset of bridge-induced hardening; an equation is derived to predict the engagement strain based on bridges’ initial configurations and the system sizes. The softening phase occurs as the covalently connected tails and loops on the other side of the crystalline stems are pulled deeply into the crystalline lamellae, weakening the anchors of bridges. Additionally, systems with longer loops form more bridging entanglements, which, like long bridges, strengthen the hardening effect during the later stages of deformation.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"210 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02643","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Influence of Topological Segment Length on the Mechanical Properties of Semicrystalline Polyethylene: A Bias-Controlled Monte Carlo Approach
We integrate a biasing mechanism into the hybrid Monte Carlo method that enables the generation of semicrystalline systems with controllable topological segment length. Analysis of the generated systems revealed an entropy-driven relationship between the bridge length and the number of bridges formed. We find that bridges significantly enhance postyield hardening, and the bridge-induced hardening can be divided into four stages: relaxed, activation, engaged, and softening. The results show that lengths of bridges govern the engagement strain and thereby the onset of bridge-induced hardening; an equation is derived to predict the engagement strain based on bridges’ initial configurations and the system sizes. The softening phase occurs as the covalently connected tails and loops on the other side of the crystalline stems are pulled deeply into the crystalline lamellae, weakening the anchors of bridges. Additionally, systems with longer loops form more bridging entanglements, which, like long bridges, strengthen the hardening effect during the later stages of deformation.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.