酵母和人类细胞中自噬相关蛋白的癌症相关突变分析。

Autophagy Pub Date : 2025-07-01 Epub Date: 2025-03-10 DOI:10.1080/15548627.2025.2471142
Yuchen Lei, Louise Uoselis, Dimitra Dialynaki, Ying Yang, Michael Lazarou, Daniel J Klionsky
{"title":"酵母和人类细胞中自噬相关蛋白的癌症相关突变分析。","authors":"Yuchen Lei, Louise Uoselis, Dimitra Dialynaki, Ying Yang, Michael Lazarou, Daniel J Klionsky","doi":"10.1080/15548627.2025.2471142","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy/autophagy is a conserved process among eukaryotes and is essential to maintain cell homeostasis; the dysregulation of autophagy has been linked with multiple human diseases, including cancer. However, not many studies have focused on the cancer-related mutations in ATG (autophagy related) proteins, which are likely to affect the protein function, influence autophagy activity and further contribute to the progression of the disease. In this study, we focused on the four ATG4 isoforms, which have a higher mutation frequency compared with the other core ATG proteins (i.e. those involved in autophagosome formation). We first studied the mutations in conserved residues and characterized one cancer-associated mutation that significantly impairs protein function and autophagy activity. Extending the study, we determined a region around the mutant residue to be essential for protein function, which had yet to be examined in previous studies. In addition, we created a yeast system expressing the human ATG4B protein to study mutations in the residues that are not conserved from human to yeast. Using this yeast model, we identified six cancer-associated mutations affecting autophagy. The effects of these mutations were further tested in mammalian cells using a quadruple <i>ATG4</i> gene knockout cell line. Our study proves the principle of using human disease-associated mutations to study Atg proteins in yeast and generates a yeast tool that is helpful for a rapid screen of mutations to determine the autophagy phenotype, providing a new perspective in studying autophagy and its relation with cancer.<b>Abbreviations:</b> 4KO: <i>ATG4</i> tetra knockout; ATG: autophagy related; BafA1: bafilomycin A<sub>1</sub>; GFP: green fluorescent protein; LC3-II: PE-conjugated form of LC3B; ORF: open reading frame; PE: phosphatidylethanolamine; RFP: red fluorescent protein; SEP: superecliptic pHluorin; Ubl: ubiquitin-like; UCEC: uterine corpus endometrial carcinoma.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1456-1472"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer-associated mutations in autophagy-related proteins analyzed in yeast and human cells.\",\"authors\":\"Yuchen Lei, Louise Uoselis, Dimitra Dialynaki, Ying Yang, Michael Lazarou, Daniel J Klionsky\",\"doi\":\"10.1080/15548627.2025.2471142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macroautophagy/autophagy is a conserved process among eukaryotes and is essential to maintain cell homeostasis; the dysregulation of autophagy has been linked with multiple human diseases, including cancer. However, not many studies have focused on the cancer-related mutations in ATG (autophagy related) proteins, which are likely to affect the protein function, influence autophagy activity and further contribute to the progression of the disease. In this study, we focused on the four ATG4 isoforms, which have a higher mutation frequency compared with the other core ATG proteins (i.e. those involved in autophagosome formation). We first studied the mutations in conserved residues and characterized one cancer-associated mutation that significantly impairs protein function and autophagy activity. Extending the study, we determined a region around the mutant residue to be essential for protein function, which had yet to be examined in previous studies. In addition, we created a yeast system expressing the human ATG4B protein to study mutations in the residues that are not conserved from human to yeast. Using this yeast model, we identified six cancer-associated mutations affecting autophagy. The effects of these mutations were further tested in mammalian cells using a quadruple <i>ATG4</i> gene knockout cell line. Our study proves the principle of using human disease-associated mutations to study Atg proteins in yeast and generates a yeast tool that is helpful for a rapid screen of mutations to determine the autophagy phenotype, providing a new perspective in studying autophagy and its relation with cancer.<b>Abbreviations:</b> 4KO: <i>ATG4</i> tetra knockout; ATG: autophagy related; BafA1: bafilomycin A<sub>1</sub>; GFP: green fluorescent protein; LC3-II: PE-conjugated form of LC3B; ORF: open reading frame; PE: phosphatidylethanolamine; RFP: red fluorescent protein; SEP: superecliptic pHluorin; Ubl: ubiquitin-like; UCEC: uterine corpus endometrial carcinoma.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"1456-1472\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2025.2471142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2471142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巨噬/自噬在真核生物中是一个保守的过程,对维持细胞稳态至关重要;自噬的失调与包括癌症在内的多种人类疾病有关。然而,针对ATG (autophagy related)蛋白中与癌症相关的突变的研究并不多,这些突变可能会影响蛋白的功能,影响自噬活性,进而促进疾病的进展。在本研究中,我们重点研究了四种ATG4亚型,与其他ATG核心蛋白(即参与自噬体形成的蛋白)相比,它们具有更高的突变频率。我们首先研究了保守残基的突变,并表征了一种显著损害蛋白质功能和自噬活性的癌症相关突变。扩展研究,我们确定了突变残基周围的一个区域对蛋白质功能至关重要,这在以前的研究中尚未得到检验。此外,我们创建了一个表达人ATG4B蛋白的酵母系统,以研究从人到酵母的非保守残基的突变。利用这种酵母模型,我们确定了六种影响自噬的癌症相关突变。这些突变的影响在哺乳动物细胞中进一步测试,使用四倍ATG4基因敲除细胞系。我们的研究证实了利用人类疾病相关突变研究酵母中Atg蛋白的原理,并生成了一种有助于快速筛选突变确定自噬表型的酵母工具,为研究自噬及其与癌症的关系提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer-associated mutations in autophagy-related proteins analyzed in yeast and human cells.

Macroautophagy/autophagy is a conserved process among eukaryotes and is essential to maintain cell homeostasis; the dysregulation of autophagy has been linked with multiple human diseases, including cancer. However, not many studies have focused on the cancer-related mutations in ATG (autophagy related) proteins, which are likely to affect the protein function, influence autophagy activity and further contribute to the progression of the disease. In this study, we focused on the four ATG4 isoforms, which have a higher mutation frequency compared with the other core ATG proteins (i.e. those involved in autophagosome formation). We first studied the mutations in conserved residues and characterized one cancer-associated mutation that significantly impairs protein function and autophagy activity. Extending the study, we determined a region around the mutant residue to be essential for protein function, which had yet to be examined in previous studies. In addition, we created a yeast system expressing the human ATG4B protein to study mutations in the residues that are not conserved from human to yeast. Using this yeast model, we identified six cancer-associated mutations affecting autophagy. The effects of these mutations were further tested in mammalian cells using a quadruple ATG4 gene knockout cell line. Our study proves the principle of using human disease-associated mutations to study Atg proteins in yeast and generates a yeast tool that is helpful for a rapid screen of mutations to determine the autophagy phenotype, providing a new perspective in studying autophagy and its relation with cancer.Abbreviations: 4KO: ATG4 tetra knockout; ATG: autophagy related; BafA1: bafilomycin A1; GFP: green fluorescent protein; LC3-II: PE-conjugated form of LC3B; ORF: open reading frame; PE: phosphatidylethanolamine; RFP: red fluorescent protein; SEP: superecliptic pHluorin; Ubl: ubiquitin-like; UCEC: uterine corpus endometrial carcinoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信