EHRAgent:代码授权大型语言模型对电子健康记录进行少量复杂表格推理。

Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang, May D Wang
{"title":"EHRAgent:代码授权大型语言模型对电子健康记录进行少量复杂表格推理。","authors":"Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang, May D Wang","doi":"10.18653/v1/2024.emnlp-main.1245","DOIUrl":null,"url":null,"abstract":"<p><p>Clinicians often rely on data engineers to retrieve complex patient information from electronic health record (EHR) systems, a process that is both inefficient and time-consuming. We propose EHRAgent, a large language model (LLM) agent empowered with accumulative domain knowledge and robust coding capability. EHRAgent enables autonomous code generation and execution to facilitate clinicians in directly interacting with EHRs using natural language. Specifically, we formulate a multi-tabular reasoning task based on EHRs as a tool-use planning process, efficiently decomposing a complex task into a sequence of manageable actions with external toolsets. We first inject relevant medical information to enable EHRAgent to effectively reason about the given query, identifying and extracting the required records from the appropriate tables. By integrating interactive coding and execution feedback, EHRAgent then effectively learns from error messages and iteratively improves its originally generated code. Experiments on three real-world EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate, verifying its strong capacity to tackle complex clinical tasks with minimal demonstrations.</p>","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"2024 ","pages":"22315-22339"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867733/pdf/","citationCount":"0","resultStr":"{\"title\":\"EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records.\",\"authors\":\"Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang, May D Wang\",\"doi\":\"10.18653/v1/2024.emnlp-main.1245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinicians often rely on data engineers to retrieve complex patient information from electronic health record (EHR) systems, a process that is both inefficient and time-consuming. We propose EHRAgent, a large language model (LLM) agent empowered with accumulative domain knowledge and robust coding capability. EHRAgent enables autonomous code generation and execution to facilitate clinicians in directly interacting with EHRs using natural language. Specifically, we formulate a multi-tabular reasoning task based on EHRs as a tool-use planning process, efficiently decomposing a complex task into a sequence of manageable actions with external toolsets. We first inject relevant medical information to enable EHRAgent to effectively reason about the given query, identifying and extracting the required records from the appropriate tables. By integrating interactive coding and execution feedback, EHRAgent then effectively learns from error messages and iteratively improves its originally generated code. Experiments on three real-world EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate, verifying its strong capacity to tackle complex clinical tasks with minimal demonstrations.</p>\",\"PeriodicalId\":74540,\"journal\":{\"name\":\"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing\",\"volume\":\"2024 \",\"pages\":\"22315-22339\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2024.emnlp-main.1245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2024.emnlp-main.1245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

临床医生通常依靠数据工程师从电子健康记录(EHR)系统中检索复杂的患者信息,这一过程既低效又耗时。提出了一种具有领域知识积累和鲁棒编码能力的大型语言模型(LLM)智能体EHRAgent。EHRAgent支持自主代码生成和执行,以方便临床医生使用自然语言直接与ehrrs交互。具体来说,我们制定了一个基于电子病历的多表格推理任务作为工具使用规划过程,有效地将复杂的任务分解为一系列使用外部工具集的可管理操作。我们首先注入相关的医疗信息,使EHRAgent能够有效地推断给定的查询,从适当的表中识别和提取所需的记录。通过集成交互式编码和执行反馈,EHRAgent可以有效地从错误消息中学习,并迭代地改进其原始生成的代码。在三个真实的EHR数据集上的实验表明,EHRAgent的成功率比最强基线高出29.6%,验证了其以最少的演示处理复杂临床任务的强大能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records.

Clinicians often rely on data engineers to retrieve complex patient information from electronic health record (EHR) systems, a process that is both inefficient and time-consuming. We propose EHRAgent, a large language model (LLM) agent empowered with accumulative domain knowledge and robust coding capability. EHRAgent enables autonomous code generation and execution to facilitate clinicians in directly interacting with EHRs using natural language. Specifically, we formulate a multi-tabular reasoning task based on EHRs as a tool-use planning process, efficiently decomposing a complex task into a sequence of manageable actions with external toolsets. We first inject relevant medical information to enable EHRAgent to effectively reason about the given query, identifying and extracting the required records from the appropriate tables. By integrating interactive coding and execution feedback, EHRAgent then effectively learns from error messages and iteratively improves its originally generated code. Experiments on three real-world EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate, verifying its strong capacity to tackle complex clinical tasks with minimal demonstrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信