Huixia Huo, Hang Zhang, Huiting Liu, Jiale Ma, Qian Zhang, Yunfang Zhao, Jiao Zheng, Pengfei Tu, Yuelin Song, Jun Li
{"title":"利用离线二维液相色谱和混合离子阱飞行时间质谱技术对沉香中2-(2-苯乙基)少量色素低聚物进行深入表征。","authors":"Huixia Huo, Hang Zhang, Huiting Liu, Jiale Ma, Qian Zhang, Yunfang Zhao, Jiao Zheng, Pengfei Tu, Yuelin Song, Jun Li","doi":"10.1186/s13020-025-01073-6","DOIUrl":null,"url":null,"abstract":"<p><p>Those minor, even trace natural products sometimes exhibit exciting activities and possess unique structures; however, it is challenging to pursue and identify such components using routine LC-MS/MS platforms attributing to their low distribution levels in herbs, the overlapping effects from the abundant ingredients and the high-level structural diversity. Here, an off-line two-dimensional liquid chromatography hook up hybrid ion trap time-of-flight mass spectrometry program was exploited to facilitate the exposure of those minor components in chromatographic domain and to acquire high-resolution multi-stage mass spectra, and the less abundant 2-(2-phenylethyl)chromone (PEC) oligomers from Chinese agarwood that is one of the most precious herbal medicines were concerned to illustrate and assess the applicability towards capturing and structurally annotating those minor components. The mass fragmentation pathways of PEC dimers, in particular the linkage fission between monomers, were proposed by assaying eighteen authentic compounds that covered different conjugation manners, and subsequently applied for the tentative structural identification of observed components. Thereafter, targeted purification was conducted to generate eight new, trace PEC dimers to justify the annotated structures. As a result, heterocyclic ring fission was the diagnostic fragmentation pathways for PEC dimers. In total, 199 PECs were discovered and characterized, consisting of 74 dimers and five trimers. Noteworthily, after structural identification with NMR assays, the confirmative structures of those eight new PEC dimers agreed well with the identities suggested by mass fragmentation rules. Above all, PEC derivatives, notably trace oligomers, in Chinese agarwood were profiled in depth, resulting in a number of interesting structures.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"26"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866864/pdf/","citationCount":"0","resultStr":"{\"title\":\"In-depth characterization of minor 2-(2-phenylethyl)chromone oligomers from Chinese agarwood by integrating offline two-dimensional liquid chromatography and hybrid ion trap time-of-flight mass spectrometry.\",\"authors\":\"Huixia Huo, Hang Zhang, Huiting Liu, Jiale Ma, Qian Zhang, Yunfang Zhao, Jiao Zheng, Pengfei Tu, Yuelin Song, Jun Li\",\"doi\":\"10.1186/s13020-025-01073-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Those minor, even trace natural products sometimes exhibit exciting activities and possess unique structures; however, it is challenging to pursue and identify such components using routine LC-MS/MS platforms attributing to their low distribution levels in herbs, the overlapping effects from the abundant ingredients and the high-level structural diversity. Here, an off-line two-dimensional liquid chromatography hook up hybrid ion trap time-of-flight mass spectrometry program was exploited to facilitate the exposure of those minor components in chromatographic domain and to acquire high-resolution multi-stage mass spectra, and the less abundant 2-(2-phenylethyl)chromone (PEC) oligomers from Chinese agarwood that is one of the most precious herbal medicines were concerned to illustrate and assess the applicability towards capturing and structurally annotating those minor components. The mass fragmentation pathways of PEC dimers, in particular the linkage fission between monomers, were proposed by assaying eighteen authentic compounds that covered different conjugation manners, and subsequently applied for the tentative structural identification of observed components. Thereafter, targeted purification was conducted to generate eight new, trace PEC dimers to justify the annotated structures. As a result, heterocyclic ring fission was the diagnostic fragmentation pathways for PEC dimers. In total, 199 PECs were discovered and characterized, consisting of 74 dimers and five trimers. Noteworthily, after structural identification with NMR assays, the confirmative structures of those eight new PEC dimers agreed well with the identities suggested by mass fragmentation rules. Above all, PEC derivatives, notably trace oligomers, in Chinese agarwood were profiled in depth, resulting in a number of interesting structures.</p>\",\"PeriodicalId\":10266,\"journal\":{\"name\":\"Chinese Medicine\",\"volume\":\"20 1\",\"pages\":\"26\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13020-025-01073-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01073-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
In-depth characterization of minor 2-(2-phenylethyl)chromone oligomers from Chinese agarwood by integrating offline two-dimensional liquid chromatography and hybrid ion trap time-of-flight mass spectrometry.
Those minor, even trace natural products sometimes exhibit exciting activities and possess unique structures; however, it is challenging to pursue and identify such components using routine LC-MS/MS platforms attributing to their low distribution levels in herbs, the overlapping effects from the abundant ingredients and the high-level structural diversity. Here, an off-line two-dimensional liquid chromatography hook up hybrid ion trap time-of-flight mass spectrometry program was exploited to facilitate the exposure of those minor components in chromatographic domain and to acquire high-resolution multi-stage mass spectra, and the less abundant 2-(2-phenylethyl)chromone (PEC) oligomers from Chinese agarwood that is one of the most precious herbal medicines were concerned to illustrate and assess the applicability towards capturing and structurally annotating those minor components. The mass fragmentation pathways of PEC dimers, in particular the linkage fission between monomers, were proposed by assaying eighteen authentic compounds that covered different conjugation manners, and subsequently applied for the tentative structural identification of observed components. Thereafter, targeted purification was conducted to generate eight new, trace PEC dimers to justify the annotated structures. As a result, heterocyclic ring fission was the diagnostic fragmentation pathways for PEC dimers. In total, 199 PECs were discovered and characterized, consisting of 74 dimers and five trimers. Noteworthily, after structural identification with NMR assays, the confirmative structures of those eight new PEC dimers agreed well with the identities suggested by mass fragmentation rules. Above all, PEC derivatives, notably trace oligomers, in Chinese agarwood were profiled in depth, resulting in a number of interesting structures.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.