基于分层代理变压器网络的COVID-19感染分割。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yi Tian, Qi Mao, Wenfeng Wang, Yan Zhang
{"title":"基于分层代理变压器网络的COVID-19感染分割。","authors":"Yi Tian, Qi Mao, Wenfeng Wang, Yan Zhang","doi":"10.1088/2057-1976/adbafa","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and timely segmentation of COVID-19 infection regions is critical for effective diagnosis and treatment. While convolutional neural networks (CNNs) exhibit strong performance in medical image segmentation, they face challenges in handling complex lesion morphologies with irregular boundaries. Transformer-based approaches, though demonstrating superior capability in capturing global context, suffer from high computational costs and suboptimal multi-scale feature integration. To address these limitations, we proposed Hierarchical Agent Transformer Network (HATNet), a hierarchical encoder-bridge-decoder architecture that optimally balances segmentation accuracy with computational efficiency. The encoder employs novel agent Transformer blocks specifically designed to capture subtle features of small COVID-19 lesions through agent tokens with linear computational complexity. A diversity restoration module (DRM) is innovatively embedded within each agent Transformer block to counteract feature degradation. The hierarchical structure simultaneously extracts high-resolution shallow features and low-resolution fine features, ensuring comprehensive feature representation. The bridge stage incorporates an improved pyramid pooling module (IPPM) that establishes hierarchical global priors, significantly improving contextual understanding for the decoder. The decoder integrates a full-scale bidirectional feature pyramid network (FsBiFPN) with a dedicated border-refinement module (BRM), collectively enhancing edge precision. The HATNet were evaluated on the COVID-19-CT-Seg and CC-CCII datasets. Experimental results yielded Dice scores of 84.14% and 81.22% respectively, demonstrating superior segmentation performance compared to state-of-the-art models. Furthermore, it achieved notable advantages in model parameters and computational complexity, highlighting its clinical deployment potential.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical agent transformer network for COVID-19 infection segmentation.\",\"authors\":\"Yi Tian, Qi Mao, Wenfeng Wang, Yan Zhang\",\"doi\":\"10.1088/2057-1976/adbafa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and timely segmentation of COVID-19 infection regions is critical for effective diagnosis and treatment. While convolutional neural networks (CNNs) exhibit strong performance in medical image segmentation, they face challenges in handling complex lesion morphologies with irregular boundaries. Transformer-based approaches, though demonstrating superior capability in capturing global context, suffer from high computational costs and suboptimal multi-scale feature integration. To address these limitations, we proposed Hierarchical Agent Transformer Network (HATNet), a hierarchical encoder-bridge-decoder architecture that optimally balances segmentation accuracy with computational efficiency. The encoder employs novel agent Transformer blocks specifically designed to capture subtle features of small COVID-19 lesions through agent tokens with linear computational complexity. A diversity restoration module (DRM) is innovatively embedded within each agent Transformer block to counteract feature degradation. The hierarchical structure simultaneously extracts high-resolution shallow features and low-resolution fine features, ensuring comprehensive feature representation. The bridge stage incorporates an improved pyramid pooling module (IPPM) that establishes hierarchical global priors, significantly improving contextual understanding for the decoder. The decoder integrates a full-scale bidirectional feature pyramid network (FsBiFPN) with a dedicated border-refinement module (BRM), collectively enhancing edge precision. The HATNet were evaluated on the COVID-19-CT-Seg and CC-CCII datasets. Experimental results yielded Dice scores of 84.14% and 81.22% respectively, demonstrating superior segmentation performance compared to state-of-the-art models. Furthermore, it achieved notable advantages in model parameters and computational complexity, highlighting its clinical deployment potential.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/adbafa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adbafa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

准确、及时地划分COVID-19感染区域对有效诊断和治疗至关重要。卷积神经网络(cnn)在医学图像分割方面表现优异,但在处理具有不规则边界的复杂病变形态方面面临挑战。基于变压器的方法虽然在捕获全局上下文方面表现出优越的能力,但存在计算成本高和多尺度特征集成不理想的问题。为了解决这些限制,我们提出了分层代理变压器网络(HATNet),这是一种分层编码器-桥接器-解码器架构,可以最佳地平衡分割精度和计算效率。编码器采用新颖的代理Transformer块,专门设计通过具有线性计算复杂度的代理令牌捕捉COVID-19小病变的细微特征。在每个代理Transformer块中创新性地嵌入了分集恢复模块(DRM)以抵消特征退化。分层结构同时提取高分辨率的浅层特征和低分辨率的精细特征,保证了特征的全面表达。桥接阶段结合了一个改进的金字塔池模块(IPPM),该模块建立了分层全局先验,显著提高了解码器的上下文理解。该解码器集成了全尺寸双向特征金字塔网络(FsBiFPN)和专用边界细化模块(BRM),共同提高了边缘精度。在COVID-19-CT-Seg和CC-CCII数据集上对HATNet进行评估。实验结果显示,Dice得分分别为84.14%和81.22%,与目前最先进的模型相比,显示出更好的分割性能。此外,该方法在模型参数和计算复杂度方面具有显著优势,凸显了其临床应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical agent transformer network for COVID-19 infection segmentation.

Accurate and timely segmentation of COVID-19 infection regions is critical for effective diagnosis and treatment. While convolutional neural networks (CNNs) exhibit strong performance in medical image segmentation, they face challenges in handling complex lesion morphologies with irregular boundaries. Transformer-based approaches, though demonstrating superior capability in capturing global context, suffer from high computational costs and suboptimal multi-scale feature integration. To address these limitations, we proposed Hierarchical Agent Transformer Network (HATNet), a hierarchical encoder-bridge-decoder architecture that optimally balances segmentation accuracy with computational efficiency. The encoder employs novel agent Transformer blocks specifically designed to capture subtle features of small COVID-19 lesions through agent tokens with linear computational complexity. A diversity restoration module (DRM) is innovatively embedded within each agent Transformer block to counteract feature degradation. The hierarchical structure simultaneously extracts high-resolution shallow features and low-resolution fine features, ensuring comprehensive feature representation. The bridge stage incorporates an improved pyramid pooling module (IPPM) that establishes hierarchical global priors, significantly improving contextual understanding for the decoder. The decoder integrates a full-scale bidirectional feature pyramid network (FsBiFPN) with a dedicated border-refinement module (BRM), collectively enhancing edge precision. The HATNet were evaluated on the COVID-19-CT-Seg and CC-CCII datasets. Experimental results yielded Dice scores of 84.14% and 81.22% respectively, demonstrating superior segmentation performance compared to state-of-the-art models. Furthermore, it achieved notable advantages in model parameters and computational complexity, highlighting its clinical deployment potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信