{"title":"Aβ肽对纤溶蛋白依赖性降解ApoE3和ApoE4的差异影响。","authors":"Merc M Kemeh, Anthony J Furnelli, Noel D Lazo","doi":"10.1021/acschemneuro.5c00065","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>ApoE4</i> allele of apolipoprotein E (ApoE4) is the strongest hereditary predisposition to Alzheimer's disease, even though ApoE4 only differs from the more common ApoE3 by a single amino acid substitution. Previous studies have shown that ApoE4 is more susceptible to proteolytic degradation than ApoE3. This is an important finding because of ApoE's role in cholesterol homeostasis and lipid transport in the brain. The molecular determinants of the increased susceptibility of ApoE4 to proteolysis are unknown. Here, we apply a combination of spectrometric and spectroscopic methods to show that amyloid-β (Aβ) peptides, including Aβ(1-40) and Aβ(pyroE3-42), differentially modulate the plasmin-dependent degradation of ApoE3 and ApoE4. In particular, our data reveal that while the Aβ peptides do not affect the proteolysis of ApoE3, the peptides enhance the degradation of ApoE4 significantly. Overall, this work motivates therapeutic development that targets the Aβ-induced dysregulation of ApoE4 homeostasis in individuals carrying the <i>ApoE4</i> allele.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"1227-1237"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Effects of Aβ Peptides on the Plasmin-Dependent Degradation of ApoE3 and ApoE4.\",\"authors\":\"Merc M Kemeh, Anthony J Furnelli, Noel D Lazo\",\"doi\":\"10.1021/acschemneuro.5c00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>ApoE4</i> allele of apolipoprotein E (ApoE4) is the strongest hereditary predisposition to Alzheimer's disease, even though ApoE4 only differs from the more common ApoE3 by a single amino acid substitution. Previous studies have shown that ApoE4 is more susceptible to proteolytic degradation than ApoE3. This is an important finding because of ApoE's role in cholesterol homeostasis and lipid transport in the brain. The molecular determinants of the increased susceptibility of ApoE4 to proteolysis are unknown. Here, we apply a combination of spectrometric and spectroscopic methods to show that amyloid-β (Aβ) peptides, including Aβ(1-40) and Aβ(pyroE3-42), differentially modulate the plasmin-dependent degradation of ApoE3 and ApoE4. In particular, our data reveal that while the Aβ peptides do not affect the proteolysis of ApoE3, the peptides enhance the degradation of ApoE4 significantly. Overall, this work motivates therapeutic development that targets the Aβ-induced dysregulation of ApoE4 homeostasis in individuals carrying the <i>ApoE4</i> allele.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"1227-1237\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.5c00065\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00065","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
载脂蛋白E (ApoE4)的ApoE4等位基因是阿尔茨海默病的最强遗传易感性,尽管ApoE4与更常见的ApoE3仅通过单个氨基酸替代而不同。先前的研究表明,ApoE4比ApoE3更容易发生蛋白水解降解。这是一个重要的发现,因为ApoE在胆固醇稳态和脑内脂质运输中起作用。ApoE4蛋白水解易感性增加的分子决定因素尚不清楚。在这里,我们应用光谱和光谱相结合的方法来证明淀粉样蛋白-β (a β)肽,包括a β(1-40)和a β(pyroE3-42),差异调节纤溶酶依赖性降解ApoE3和ApoE4。特别是,我们的数据显示,虽然Aβ肽不影响ApoE3的蛋白水解,但肽显著增强ApoE4的降解。总的来说,这项工作激发了针对携带ApoE4等位基因的个体中a β诱导的ApoE4体内平衡失调的治疗发展。
Differential Effects of Aβ Peptides on the Plasmin-Dependent Degradation of ApoE3 and ApoE4.
The ApoE4 allele of apolipoprotein E (ApoE4) is the strongest hereditary predisposition to Alzheimer's disease, even though ApoE4 only differs from the more common ApoE3 by a single amino acid substitution. Previous studies have shown that ApoE4 is more susceptible to proteolytic degradation than ApoE3. This is an important finding because of ApoE's role in cholesterol homeostasis and lipid transport in the brain. The molecular determinants of the increased susceptibility of ApoE4 to proteolysis are unknown. Here, we apply a combination of spectrometric and spectroscopic methods to show that amyloid-β (Aβ) peptides, including Aβ(1-40) and Aβ(pyroE3-42), differentially modulate the plasmin-dependent degradation of ApoE3 and ApoE4. In particular, our data reveal that while the Aβ peptides do not affect the proteolysis of ApoE3, the peptides enhance the degradation of ApoE4 significantly. Overall, this work motivates therapeutic development that targets the Aβ-induced dysregulation of ApoE4 homeostasis in individuals carrying the ApoE4 allele.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research