一种用于精确和可扩展销售预测的混合时间卷积网络和变压器模型

MD AL Rafi;Gourab Nicholas Rodrigues;MD Nazmul Hossain Mir;MD Shahriar Mahmud Bhuiyan;M. F. Mridha;MD Rashedul Islam;Yutaka Watanobe
{"title":"一种用于精确和可扩展销售预测的混合时间卷积网络和变压器模型","authors":"MD AL Rafi;Gourab Nicholas Rodrigues;MD Nazmul Hossain Mir;MD Shahriar Mahmud Bhuiyan;M. F. Mridha;MD Rashedul Islam;Yutaka Watanobe","doi":"10.1109/OJCS.2025.3538579","DOIUrl":null,"url":null,"abstract":"Accurate product sales forecasting is critical for inventory management, pricing strategies, and supply chain optimization in the retail industry. This article proposes a novel deep learning architecture that integrates Temporal Convolutional Networks (TCNs) with Transformer-based attention mechanisms to capture both short-term and long-term dependencies in time-series sales data. Utilizing the Favorita Grocery Sales Forecasting dataset, our hybrid TCN Transformer model demonstrates superior performance over existing models by incorporating external factors such as holidays, promotions, oil prices, and transaction data. The model achieves state-of-the-art results with a Mean Absolute Error (MAE) of 2.01, Root Mean Squared Error (RMSE) of 2.81, and a Weighted Mean Absolute Percentage Error (wMAPE) of 4.22%, significantly outperforming other leading models such as LSTM, GRU, and TFT. Extensive cross-validation confirms the robustness of our model, achieving consistently high performance across multiple folds.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"380-391"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870315","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Temporal Convolutional Network and Transformer Model for Accurate and Scalable Sales Forecasting\",\"authors\":\"MD AL Rafi;Gourab Nicholas Rodrigues;MD Nazmul Hossain Mir;MD Shahriar Mahmud Bhuiyan;M. F. Mridha;MD Rashedul Islam;Yutaka Watanobe\",\"doi\":\"10.1109/OJCS.2025.3538579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate product sales forecasting is critical for inventory management, pricing strategies, and supply chain optimization in the retail industry. This article proposes a novel deep learning architecture that integrates Temporal Convolutional Networks (TCNs) with Transformer-based attention mechanisms to capture both short-term and long-term dependencies in time-series sales data. Utilizing the Favorita Grocery Sales Forecasting dataset, our hybrid TCN Transformer model demonstrates superior performance over existing models by incorporating external factors such as holidays, promotions, oil prices, and transaction data. The model achieves state-of-the-art results with a Mean Absolute Error (MAE) of 2.01, Root Mean Squared Error (RMSE) of 2.81, and a Weighted Mean Absolute Percentage Error (wMAPE) of 4.22%, significantly outperforming other leading models such as LSTM, GRU, and TFT. Extensive cross-validation confirms the robustness of our model, achieving consistently high performance across multiple folds.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"380-391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870315\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10870315/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10870315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的产品销售预测对零售行业的库存管理、定价策略和供应链优化至关重要。本文提出了一种新的深度学习架构,该架构将时间卷积网络(tcnn)与基于transformer的注意力机制集成在一起,以捕获时间序列销售数据中的短期和长期依赖关系。利用Favorita杂货销售预测数据集,我们的混合TCN Transformer模型通过结合假日、促销、油价和交易数据等外部因素,显示出比现有模型更好的性能。该模型的平均绝对误差(MAE)为2.01,均方根误差(RMSE)为2.81,加权平均绝对百分比误差(wMAPE)为4.22%,显著优于LSTM、GRU和TFT等其他领先模型。广泛的交叉验证证实了我们模型的稳健性,在多个折叠中实现了一致的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Temporal Convolutional Network and Transformer Model for Accurate and Scalable Sales Forecasting
Accurate product sales forecasting is critical for inventory management, pricing strategies, and supply chain optimization in the retail industry. This article proposes a novel deep learning architecture that integrates Temporal Convolutional Networks (TCNs) with Transformer-based attention mechanisms to capture both short-term and long-term dependencies in time-series sales data. Utilizing the Favorita Grocery Sales Forecasting dataset, our hybrid TCN Transformer model demonstrates superior performance over existing models by incorporating external factors such as holidays, promotions, oil prices, and transaction data. The model achieves state-of-the-art results with a Mean Absolute Error (MAE) of 2.01, Root Mean Squared Error (RMSE) of 2.81, and a Weighted Mean Absolute Percentage Error (wMAPE) of 4.22%, significantly outperforming other leading models such as LSTM, GRU, and TFT. Extensive cross-validation confirms the robustness of our model, achieving consistently high performance across multiple folds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信