高效率:优化混合专家模型训练与自适应负载平衡

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Yan Zeng;Chengchuang Huang;Yipeng Mei;Lifu Zhang;Teng Su;Wei Ye;Wenqi Shi;Shengnan Wang
{"title":"高效率:优化混合专家模型训练与自适应负载平衡","authors":"Yan Zeng;Chengchuang Huang;Yipeng Mei;Lifu Zhang;Teng Su;Wei Ye;Wenqi Shi;Shengnan Wang","doi":"10.1109/TPDS.2025.3539297","DOIUrl":null,"url":null,"abstract":"Mixture-of-Experts (MoE) efficiently trains large models by using sparse activation to lower costs, selecting a few experts based on data characteristics. However, it faces challenges such as All-to-All communication overhead and load imbalance, with most optimizations targeting dynamic graphs rather than the more efficient static graphs. This study identifies two key challenges in training MoE on static graphs: 1) excessive All-to-All communication (up to 75% of iteration time) and load imbalance (70% of tokens handled by two experts) between experts due to the sparse structure of the MoE model and the token distribution; and 2) inefficient zero-padding for static shapes, leading to unnecessary computational overhead(wasting approximately 50% of resources). Thus, EfficientMoE, a scheduling method based on expert load and data characteristics, is introduced. EfficientMoE first designs a sampler to collect real-time information about token distribution, expert load, etc. It constructs a load prediction model to evaluate expert load. Subsequently, EfficientMoE proposes a dynamic schedule strategy for experts with evaluated expert load, reducing All-to-All communication and addressing load-balancing issues. Additionally, an expert capacity model is proposed to set different capacities for replicas of hot experts before static graph compilation, minimizing computation and storage overhead caused by significant padding. This study implements EfficientMoE in MindSpore and uses 32 Ascend AI accelerators to train an MoE model with 21 billion parameters and evaluate its validity. EfficientMoE demonstrated an improvement of 30% in model training time, approximately 12% reduction in communication time, and saved 35% computational resources across different clusters, compared with Switch transformers, and the Fastermoe method for static graphs.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 4","pages":"677-688"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EfficientMoE: Optimizing Mixture-of-Experts Model Training With Adaptive Load Balance\",\"authors\":\"Yan Zeng;Chengchuang Huang;Yipeng Mei;Lifu Zhang;Teng Su;Wei Ye;Wenqi Shi;Shengnan Wang\",\"doi\":\"10.1109/TPDS.2025.3539297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixture-of-Experts (MoE) efficiently trains large models by using sparse activation to lower costs, selecting a few experts based on data characteristics. However, it faces challenges such as All-to-All communication overhead and load imbalance, with most optimizations targeting dynamic graphs rather than the more efficient static graphs. This study identifies two key challenges in training MoE on static graphs: 1) excessive All-to-All communication (up to 75% of iteration time) and load imbalance (70% of tokens handled by two experts) between experts due to the sparse structure of the MoE model and the token distribution; and 2) inefficient zero-padding for static shapes, leading to unnecessary computational overhead(wasting approximately 50% of resources). Thus, EfficientMoE, a scheduling method based on expert load and data characteristics, is introduced. EfficientMoE first designs a sampler to collect real-time information about token distribution, expert load, etc. It constructs a load prediction model to evaluate expert load. Subsequently, EfficientMoE proposes a dynamic schedule strategy for experts with evaluated expert load, reducing All-to-All communication and addressing load-balancing issues. Additionally, an expert capacity model is proposed to set different capacities for replicas of hot experts before static graph compilation, minimizing computation and storage overhead caused by significant padding. This study implements EfficientMoE in MindSpore and uses 32 Ascend AI accelerators to train an MoE model with 21 billion parameters and evaluate its validity. EfficientMoE demonstrated an improvement of 30% in model training time, approximately 12% reduction in communication time, and saved 35% computational resources across different clusters, compared with Switch transformers, and the Fastermoe method for static graphs.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 4\",\"pages\":\"677-688\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10876795/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10876795/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

混合专家(mix -of- experts, MoE)是一种基于数据特征选择专家的方法,通过稀疏激活来降低成本,从而有效地训练大型模型。然而,它面临着诸如All-to-All通信开销和负载不平衡等挑战,大多数优化针对的是动态图,而不是更高效的静态图。本研究确定了在静态图上训练MoE的两个关键挑战:1)由于MoE模型的稀疏结构和令牌分布,专家之间过度的All-to-All通信(高达75%的迭代时间)和负载不平衡(70%的令牌由两个专家处理);2)静态形状的无效零填充,导致不必要的计算开销(浪费大约50%的资源)。在此基础上,提出了一种基于专家负荷和数据特性的调度方法——高效模(EfficientMoE)。EfficientMoE首先设计了一个采样器来收集有关令牌分布、专家负载等的实时信息。建立了负荷预测模型,对专家负荷进行评估。随后,根据评估的专家负载,为专家提出了一种动态调度策略,减少了All-to-All通信,解决了负载平衡问题。此外,提出了专家容量模型,在静态图编译之前为热门专家的副本设置不同的容量,最大限度地减少了大量填充带来的计算和存储开销。本研究在MindSpore中实现了EfficientMoE,使用32个Ascend AI加速器训练了一个包含210亿个参数的MoE模型,并对其有效性进行了评估。与Switch transformer和fastmoe方法相比,EfficientMoE方法在模型训练时间上提高了30%,在通信时间上减少了大约12%,在不同的集群上节省了35%的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EfficientMoE: Optimizing Mixture-of-Experts Model Training With Adaptive Load Balance
Mixture-of-Experts (MoE) efficiently trains large models by using sparse activation to lower costs, selecting a few experts based on data characteristics. However, it faces challenges such as All-to-All communication overhead and load imbalance, with most optimizations targeting dynamic graphs rather than the more efficient static graphs. This study identifies two key challenges in training MoE on static graphs: 1) excessive All-to-All communication (up to 75% of iteration time) and load imbalance (70% of tokens handled by two experts) between experts due to the sparse structure of the MoE model and the token distribution; and 2) inefficient zero-padding for static shapes, leading to unnecessary computational overhead(wasting approximately 50% of resources). Thus, EfficientMoE, a scheduling method based on expert load and data characteristics, is introduced. EfficientMoE first designs a sampler to collect real-time information about token distribution, expert load, etc. It constructs a load prediction model to evaluate expert load. Subsequently, EfficientMoE proposes a dynamic schedule strategy for experts with evaluated expert load, reducing All-to-All communication and addressing load-balancing issues. Additionally, an expert capacity model is proposed to set different capacities for replicas of hot experts before static graph compilation, minimizing computation and storage overhead caused by significant padding. This study implements EfficientMoE in MindSpore and uses 32 Ascend AI accelerators to train an MoE model with 21 billion parameters and evaluate its validity. EfficientMoE demonstrated an improvement of 30% in model training time, approximately 12% reduction in communication time, and saved 35% computational resources across different clusters, compared with Switch transformers, and the Fastermoe method for static graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信