{"title":"曼哈顿平面有限子集的修剪","authors":"Gökçe Çakmak , Ali Deniz , Şahin Koçak","doi":"10.1016/j.disopt.2025.100880","DOIUrl":null,"url":null,"abstract":"<div><div>V. Turaev defined recently an operation of “Trimming” for pseudo-metric spaces and analyzed the tight span of (pseudo-)metric spaces via this process. In this work we investigate the trimming of finite subspaces of the Manhattan plane. We show that this operation amounts for them to taking the metric center set and we give an algorithm to construct the tight spans via trimming.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"56 ","pages":"Article 100880"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trimming of finite subsets of the Manhattan plane\",\"authors\":\"Gökçe Çakmak , Ali Deniz , Şahin Koçak\",\"doi\":\"10.1016/j.disopt.2025.100880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>V. Turaev defined recently an operation of “Trimming” for pseudo-metric spaces and analyzed the tight span of (pseudo-)metric spaces via this process. In this work we investigate the trimming of finite subspaces of the Manhattan plane. We show that this operation amounts for them to taking the metric center set and we give an algorithm to construct the tight spans via trimming.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"56 \",\"pages\":\"Article 100880\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528625000039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
V. Turaev最近定义了伪度量空间的“修剪”操作,并通过此过程分析了(伪)度量空间的紧跨度。在这项工作中,我们研究了曼哈顿平面的有限子空间的修剪。我们证明了这种操作相当于取度量中心集,并给出了一种通过切边构造紧跨的算法。
V. Turaev defined recently an operation of “Trimming” for pseudo-metric spaces and analyzed the tight span of (pseudo-)metric spaces via this process. In this work we investigate the trimming of finite subspaces of the Manhattan plane. We show that this operation amounts for them to taking the metric center set and we give an algorithm to construct the tight spans via trimming.
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.