{"title":"基于动量调频网络的低剂量计算机断层扫描重建","authors":"Qixiang Sun , Ning He , Ping Yang , Xing Zhao","doi":"10.1016/j.cmpb.2025.108673","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Recent investigations into Low-Dose Computed Tomography (LDCT) reconstruction methods have brought Model-Based Data-Driven (MBDD) approaches to the forefront. One prominent architecture within MBDD entails the integration of Model-Based Iterative Reconstruction (MBIR) with Deep Learning (DL). While this approach offers the advantage of harnessing information from sinogram and image domains, it also reveals several deficiencies. First and foremost, the efficacy of DL methods within the realm of MBDD necessitates meticulous enhancement, as it directly impacts the computational cost and the quality of reconstructed images. Next, high computational costs and a high number of iterations limit the development of MBDD methods. Last but not least, CT reconstruction is sensitive to pixel accuracy, and the role of loss functions within DL methods is crucial for meeting this requirement.</div></div><div><h3>Methods:</h3><div>This paper advances MBDD methods through three principal contributions. Firstly, we introduce an innovative Frequency Adjustment Network (FAN) that effectively adjusts both high and low-frequency components during the inference phase, resulting in substantial enhancements in reconstruction performance. Second, we develop the Momentum-based Frequency Adjustment Network (MFAN), which leverages momentum terms as an extrapolation strategy to facilitate the amplification of changes throughout successive iterations, culminating in a rapid convergence framework. Lastly, we delve into the visual properties of CT images and present a unique loss function named Focal Detail Loss (FDL). The FDL function preserves fine details throughout the training phase, significantly improving reconstruction quality.</div></div><div><h3>Results:</h3><div>Through a series of experiments validation on the AAPM-Mayo public dataset and real-world piglet datasets, the aforementioned three contributions demonstrated superior performance. MFAN achieved convergence in 10 iterations as an iteration method, faster than other methods. Ablation studies further highlight the advanced performance of each contribution.</div></div><div><h3>Conclusions:</h3><div>This paper presents an MBDD-based LDCT reconstruction method using a momentum-based frequency adjustment network with a focal detail loss function. This approach significantly reduces the number of iterations required for convergence while achieving superior reconstruction results in visual and numerical analyses.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"263 ","pages":"Article 108673"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low dose computed tomography reconstruction with momentum-based frequency adjustment network\",\"authors\":\"Qixiang Sun , Ning He , Ping Yang , Xing Zhao\",\"doi\":\"10.1016/j.cmpb.2025.108673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Recent investigations into Low-Dose Computed Tomography (LDCT) reconstruction methods have brought Model-Based Data-Driven (MBDD) approaches to the forefront. One prominent architecture within MBDD entails the integration of Model-Based Iterative Reconstruction (MBIR) with Deep Learning (DL). While this approach offers the advantage of harnessing information from sinogram and image domains, it also reveals several deficiencies. First and foremost, the efficacy of DL methods within the realm of MBDD necessitates meticulous enhancement, as it directly impacts the computational cost and the quality of reconstructed images. Next, high computational costs and a high number of iterations limit the development of MBDD methods. Last but not least, CT reconstruction is sensitive to pixel accuracy, and the role of loss functions within DL methods is crucial for meeting this requirement.</div></div><div><h3>Methods:</h3><div>This paper advances MBDD methods through three principal contributions. Firstly, we introduce an innovative Frequency Adjustment Network (FAN) that effectively adjusts both high and low-frequency components during the inference phase, resulting in substantial enhancements in reconstruction performance. Second, we develop the Momentum-based Frequency Adjustment Network (MFAN), which leverages momentum terms as an extrapolation strategy to facilitate the amplification of changes throughout successive iterations, culminating in a rapid convergence framework. Lastly, we delve into the visual properties of CT images and present a unique loss function named Focal Detail Loss (FDL). The FDL function preserves fine details throughout the training phase, significantly improving reconstruction quality.</div></div><div><h3>Results:</h3><div>Through a series of experiments validation on the AAPM-Mayo public dataset and real-world piglet datasets, the aforementioned three contributions demonstrated superior performance. MFAN achieved convergence in 10 iterations as an iteration method, faster than other methods. Ablation studies further highlight the advanced performance of each contribution.</div></div><div><h3>Conclusions:</h3><div>This paper presents an MBDD-based LDCT reconstruction method using a momentum-based frequency adjustment network with a focal detail loss function. This approach significantly reduces the number of iterations required for convergence while achieving superior reconstruction results in visual and numerical analyses.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"263 \",\"pages\":\"Article 108673\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260725000902\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000902","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Low dose computed tomography reconstruction with momentum-based frequency adjustment network
Background and Objective:
Recent investigations into Low-Dose Computed Tomography (LDCT) reconstruction methods have brought Model-Based Data-Driven (MBDD) approaches to the forefront. One prominent architecture within MBDD entails the integration of Model-Based Iterative Reconstruction (MBIR) with Deep Learning (DL). While this approach offers the advantage of harnessing information from sinogram and image domains, it also reveals several deficiencies. First and foremost, the efficacy of DL methods within the realm of MBDD necessitates meticulous enhancement, as it directly impacts the computational cost and the quality of reconstructed images. Next, high computational costs and a high number of iterations limit the development of MBDD methods. Last but not least, CT reconstruction is sensitive to pixel accuracy, and the role of loss functions within DL methods is crucial for meeting this requirement.
Methods:
This paper advances MBDD methods through three principal contributions. Firstly, we introduce an innovative Frequency Adjustment Network (FAN) that effectively adjusts both high and low-frequency components during the inference phase, resulting in substantial enhancements in reconstruction performance. Second, we develop the Momentum-based Frequency Adjustment Network (MFAN), which leverages momentum terms as an extrapolation strategy to facilitate the amplification of changes throughout successive iterations, culminating in a rapid convergence framework. Lastly, we delve into the visual properties of CT images and present a unique loss function named Focal Detail Loss (FDL). The FDL function preserves fine details throughout the training phase, significantly improving reconstruction quality.
Results:
Through a series of experiments validation on the AAPM-Mayo public dataset and real-world piglet datasets, the aforementioned three contributions demonstrated superior performance. MFAN achieved convergence in 10 iterations as an iteration method, faster than other methods. Ablation studies further highlight the advanced performance of each contribution.
Conclusions:
This paper presents an MBDD-based LDCT reconstruction method using a momentum-based frequency adjustment network with a focal detail loss function. This approach significantly reduces the number of iterations required for convergence while achieving superior reconstruction results in visual and numerical analyses.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.