SFFEF-YOLO:基于细粒度特征提取与融合的无人机小目标检测网络

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chenxi Bai , Kexin Zhang , Haozhe Jin , Peng Qian , Rui Zhai , Ke Lu
{"title":"SFFEF-YOLO:基于细粒度特征提取与融合的无人机小目标检测网络","authors":"Chenxi Bai ,&nbsp;Kexin Zhang ,&nbsp;Haozhe Jin ,&nbsp;Peng Qian ,&nbsp;Rui Zhai ,&nbsp;Ke Lu","doi":"10.1016/j.imavis.2025.105469","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) images object detection has emerged as a research hotspot, yet remains a significant challenge due to variable target scales and the high proportion of small objects caused by UAVs’ diverse altitudes and angles. To address these issues, we propose a novel Small Object Detection Network Based on Fine-Grained Feature Extraction and Fusion(SFFEF-YOLO). First, we introduce a tiny prediction head to replace the large prediction head, enhancing the detection accuracy for tiny objects while reducing model complexity. Second, we design a Fine-Grained Information Extraction Module (FIEM) to replace standard convolutions. This module improves feature extraction and reduces information loss during downsampling by utilizing multi-branch operations and SPD-Conv. Third, we develop a Multi-Scale Feature Fusion Module (MFFM), which adds an additional skip connection branch based on the bidirectional feature pyramid network (BiFPN) to preserve fine-grained information and improve multi-scale feature fusion. We evaluated SFFEF-YOLO on the VisDrone2019-DET and UAVDT datasets. Compared to YOLOv8, experimental results demonstrate that SFFEF-YOLO achieves a 9.9% mAP0.5 improvement on the VisDrone2019-DET dataset and a 3.6% mAP0.5 improvement on the UAVDT dataset.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105469"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFFEF-YOLO: Small object detection network based on fine-grained feature extraction and fusion for unmanned aerial images\",\"authors\":\"Chenxi Bai ,&nbsp;Kexin Zhang ,&nbsp;Haozhe Jin ,&nbsp;Peng Qian ,&nbsp;Rui Zhai ,&nbsp;Ke Lu\",\"doi\":\"10.1016/j.imavis.2025.105469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicles (UAVs) images object detection has emerged as a research hotspot, yet remains a significant challenge due to variable target scales and the high proportion of small objects caused by UAVs’ diverse altitudes and angles. To address these issues, we propose a novel Small Object Detection Network Based on Fine-Grained Feature Extraction and Fusion(SFFEF-YOLO). First, we introduce a tiny prediction head to replace the large prediction head, enhancing the detection accuracy for tiny objects while reducing model complexity. Second, we design a Fine-Grained Information Extraction Module (FIEM) to replace standard convolutions. This module improves feature extraction and reduces information loss during downsampling by utilizing multi-branch operations and SPD-Conv. Third, we develop a Multi-Scale Feature Fusion Module (MFFM), which adds an additional skip connection branch based on the bidirectional feature pyramid network (BiFPN) to preserve fine-grained information and improve multi-scale feature fusion. We evaluated SFFEF-YOLO on the VisDrone2019-DET and UAVDT datasets. Compared to YOLOv8, experimental results demonstrate that SFFEF-YOLO achieves a 9.9% mAP0.5 improvement on the VisDrone2019-DET dataset and a 3.6% mAP0.5 improvement on the UAVDT dataset.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"156 \",\"pages\":\"Article 105469\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625000575\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000575","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

无人机图像目标检测已成为一个研究热点,但由于无人机飞行高度和角度不同,目标尺度多变,小目标占比高,因此一直是一项重大挑战。为了解决这些问题,我们提出了一种新的基于细粒度特征提取和融合的小目标检测网络(SFFEF-YOLO)。首先,我们引入微小的预测头来取代大的预测头,在提高微小目标检测精度的同时降低了模型复杂度。其次,我们设计了一个细粒度信息提取模块(FIEM)来取代标准卷积。该模块利用多分支操作和SPD-Conv技术,改进了特征提取,减少了下采样过程中的信息丢失。第三,我们开发了一个多尺度特征融合模块(MFFM),该模块在双向特征金字塔网络(BiFPN)的基础上增加了一个跳跃连接分支,以保持细粒度信息并改善多尺度特征融合。我们在VisDrone2019-DET和UAVDT数据集上评估了SFFEF-YOLO。实验结果表明,与YOLOv8相比,SFFEF-YOLO在VisDrone2019-DET数据集上实现了9.9%的mAP0.5改进,在UAVDT数据集上实现了3.6%的mAP0.5改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SFFEF-YOLO: Small object detection network based on fine-grained feature extraction and fusion for unmanned aerial images
Unmanned aerial vehicles (UAVs) images object detection has emerged as a research hotspot, yet remains a significant challenge due to variable target scales and the high proportion of small objects caused by UAVs’ diverse altitudes and angles. To address these issues, we propose a novel Small Object Detection Network Based on Fine-Grained Feature Extraction and Fusion(SFFEF-YOLO). First, we introduce a tiny prediction head to replace the large prediction head, enhancing the detection accuracy for tiny objects while reducing model complexity. Second, we design a Fine-Grained Information Extraction Module (FIEM) to replace standard convolutions. This module improves feature extraction and reduces information loss during downsampling by utilizing multi-branch operations and SPD-Conv. Third, we develop a Multi-Scale Feature Fusion Module (MFFM), which adds an additional skip connection branch based on the bidirectional feature pyramid network (BiFPN) to preserve fine-grained information and improve multi-scale feature fusion. We evaluated SFFEF-YOLO on the VisDrone2019-DET and UAVDT datasets. Compared to YOLOv8, experimental results demonstrate that SFFEF-YOLO achieves a 9.9% mAP0.5 improvement on the VisDrone2019-DET dataset and a 3.6% mAP0.5 improvement on the UAVDT dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信