切除图:通过虚拟切除的实时无闭塞可视化规划肝脏手术

Ruoyan Meng , Davit Aghayan , Egidijus Pelanis , Bjørn Edwin , Faouzi Alaya Cheikh , Rafael Palomar
{"title":"切除图:通过虚拟切除的实时无闭塞可视化规划肝脏手术","authors":"Ruoyan Meng ,&nbsp;Davit Aghayan ,&nbsp;Egidijus Pelanis ,&nbsp;Bjørn Edwin ,&nbsp;Faouzi Alaya Cheikh ,&nbsp;Rafael Palomar","doi":"10.1016/j.cmpbup.2025.100186","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Visualization of virtual resections plays a central role in computer-assisted liver surgery planning. However, the intricate liver anatomical information often results in occlusions and visualization information clutter, which can lead to inaccuracies in virtual resections. To overcome these challenges, we introduce <em>Resectograms</em>, which are planar (2D) representations of virtual resections enabling the visualization of information associated with the surgical plan.</div></div><div><h3>Methods:</h3><div>Resectograms are computed in real-time and displayed as additional 2D views showing anatomical, functional, and risk-associated information extracted from the 3D virtual resection as this is modified during planning, offering surgeons an occlusion-free visualization of the virtual resection during surgery planning. To further improve functionality, we explored three flattening methods: fixed-shape, Least Squares Conformal Maps, and As-Rigid-As-Possible, to generate these 2D views. Additionally, we optimized GPU memory usage by downsampling texture objects, ensuring errors remain within acceptable limits as defined by surgeons.</div></div><div><h3>Results:</h3><div>We evaluated Resectograms with experienced surgeons (n = 4, 9-15 years) and assessed 2D flattening methods with computer and biomedical scientists (n = 11) through visual experiments. Surgeons found Resectograms valuable for enhancing surgical planning effectiveness and accuracy. Among flattening methods, Least Squares Conformal Maps and As-Rigid-As-Possible techniques demonstrated similarly low distortion levels, superior to the fixed-shape approach. Our analysis of texture object downsampling revealed effectiveness for liver and tumor segmentations, but less so for vessel segmentations.</div></div><div><h3>Conclusions:</h3><div>This paper presents Resectograms, a novel method for visualizing liver virtual resection plans in 2D, offering an intuitive, occlusion-free representation computable in real-time. Resectograms incorporate multiple information layers, providing comprehensive data for liver surgery planning. We enhanced the visualization through improved 3D-to-2D orientation mapping and distortion-minimizing parameterization algorithms. This research contributes to advancing liver surgery planning tools by offering a more accessible and informative visualization method. The code repository for this work is available at: <span><span>https://github.com/ALive-research/Slicer-Liver</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100186"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resectograms: Planning liver surgery with real-time occlusion-free visualization of virtual resections\",\"authors\":\"Ruoyan Meng ,&nbsp;Davit Aghayan ,&nbsp;Egidijus Pelanis ,&nbsp;Bjørn Edwin ,&nbsp;Faouzi Alaya Cheikh ,&nbsp;Rafael Palomar\",\"doi\":\"10.1016/j.cmpbup.2025.100186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Visualization of virtual resections plays a central role in computer-assisted liver surgery planning. However, the intricate liver anatomical information often results in occlusions and visualization information clutter, which can lead to inaccuracies in virtual resections. To overcome these challenges, we introduce <em>Resectograms</em>, which are planar (2D) representations of virtual resections enabling the visualization of information associated with the surgical plan.</div></div><div><h3>Methods:</h3><div>Resectograms are computed in real-time and displayed as additional 2D views showing anatomical, functional, and risk-associated information extracted from the 3D virtual resection as this is modified during planning, offering surgeons an occlusion-free visualization of the virtual resection during surgery planning. To further improve functionality, we explored three flattening methods: fixed-shape, Least Squares Conformal Maps, and As-Rigid-As-Possible, to generate these 2D views. Additionally, we optimized GPU memory usage by downsampling texture objects, ensuring errors remain within acceptable limits as defined by surgeons.</div></div><div><h3>Results:</h3><div>We evaluated Resectograms with experienced surgeons (n = 4, 9-15 years) and assessed 2D flattening methods with computer and biomedical scientists (n = 11) through visual experiments. Surgeons found Resectograms valuable for enhancing surgical planning effectiveness and accuracy. Among flattening methods, Least Squares Conformal Maps and As-Rigid-As-Possible techniques demonstrated similarly low distortion levels, superior to the fixed-shape approach. Our analysis of texture object downsampling revealed effectiveness for liver and tumor segmentations, but less so for vessel segmentations.</div></div><div><h3>Conclusions:</h3><div>This paper presents Resectograms, a novel method for visualizing liver virtual resection plans in 2D, offering an intuitive, occlusion-free representation computable in real-time. Resectograms incorporate multiple information layers, providing comprehensive data for liver surgery planning. We enhanced the visualization through improved 3D-to-2D orientation mapping and distortion-minimizing parameterization algorithms. This research contributes to advancing liver surgery planning tools by offering a more accessible and informative visualization method. The code repository for this work is available at: <span><span>https://github.com/ALive-research/Slicer-Liver</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"7 \",\"pages\":\"Article 100186\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990025000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resectograms: Planning liver surgery with real-time occlusion-free visualization of virtual resections

Background and Objective:

Visualization of virtual resections plays a central role in computer-assisted liver surgery planning. However, the intricate liver anatomical information often results in occlusions and visualization information clutter, which can lead to inaccuracies in virtual resections. To overcome these challenges, we introduce Resectograms, which are planar (2D) representations of virtual resections enabling the visualization of information associated with the surgical plan.

Methods:

Resectograms are computed in real-time and displayed as additional 2D views showing anatomical, functional, and risk-associated information extracted from the 3D virtual resection as this is modified during planning, offering surgeons an occlusion-free visualization of the virtual resection during surgery planning. To further improve functionality, we explored three flattening methods: fixed-shape, Least Squares Conformal Maps, and As-Rigid-As-Possible, to generate these 2D views. Additionally, we optimized GPU memory usage by downsampling texture objects, ensuring errors remain within acceptable limits as defined by surgeons.

Results:

We evaluated Resectograms with experienced surgeons (n = 4, 9-15 years) and assessed 2D flattening methods with computer and biomedical scientists (n = 11) through visual experiments. Surgeons found Resectograms valuable for enhancing surgical planning effectiveness and accuracy. Among flattening methods, Least Squares Conformal Maps and As-Rigid-As-Possible techniques demonstrated similarly low distortion levels, superior to the fixed-shape approach. Our analysis of texture object downsampling revealed effectiveness for liver and tumor segmentations, but less so for vessel segmentations.

Conclusions:

This paper presents Resectograms, a novel method for visualizing liver virtual resection plans in 2D, offering an intuitive, occlusion-free representation computable in real-time. Resectograms incorporate multiple information layers, providing comprehensive data for liver surgery planning. We enhanced the visualization through improved 3D-to-2D orientation mapping and distortion-minimizing parameterization algorithms. This research contributes to advancing liver surgery planning tools by offering a more accessible and informative visualization method. The code repository for this work is available at: https://github.com/ALive-research/Slicer-Liver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信